摘要
通过研究Laplace变换在初值问题中的应用,且拟解决线性微分方程的初值问题。我们知道Laplace变换求解初值问题比其他方法条件宽泛方便。用Laplace变换法可把原函数所遵从的常系数微分方程变成像函数所遵从的代数方程来进行求解;把偏微分方程变成常系数微分方程,然后进行求解。
The essay studies mainly on application of Laplace transforms to initial value, and solves the problem on initial value of linear differential equation. We know the method of solving the initial value by Laplace transforms is convenient and extensive than many other methods. At first, we can transform the ordinary differential equation of original function into the algebraic equation of image function, or transform the partial differential equation into ordinary differential equation by Laplace transforms method, then solve it.
出处
《太原大学教育学院学报》
2007年第2期88-91,共4页
Journal of Education Institute of TAIYUAN University
关键词
LAPLACE变换
初值问题
原函数
像函数
反演
Laplace transforms
initial value question
original function
image function
inversion