期刊文献+

Extremal ranks of the solution to a system of real quaternion matrix equations 被引量:1

Extremal ranks of the solution to a system of real quaternion matrix equations
下载PDF
导出
摘要 In this paper, the maximal and minimal ranks of the solution to a system of matrix equations over H, the real quaternion algebra, were derived. A previous known result could be regarded as a special case of the new result. In this paper, the maximal and minimal ranks of the solution to a system of matrix equations over H, the real quaternion algebra, were derived. A previous known result could be regarded as a special case of the new result.
出处 《Journal of Shanghai University(English Edition)》 CAS 2007年第3期229-232,共4页 上海大学学报(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No.60672160)
关键词 system of matrix equations SOLUTION minimal rank maximal rank generalized inverse system of matrix equations, solution, minimal rank, maximal rank, generalized inverse
  • 相关文献

参考文献1

二级参考文献24

  • 1Wang, Q. W., Li, S. Z.: The persymmetric and perskewsymmetric solutions to sets of matrix equations over a finite central algebra. Acta Math Sinica, Chinese Serges, 47(1), 27-34 (2004).
  • 2Wang, Q. W.: A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity. Linear Alqebra Appl., 384, 43-54 (2004).
  • 3Bhimasankaram, P.: Common solutions to the linear matrix equations AX=B, CX=D, and EXF=G.Sankhya Ser. A, 38, 404-409 (1976).
  • 4Aitken, A. C.: Determinants and Matrices, Oliver and Boyd, Edinburgh, 1939.
  • 5Datta, L., Morgera, S. D.: On the reducibility of centrosymmetric matrices-applications in engineering problems. Circuits Systems Siq. Proc., 8(1), 71-96 (1989).
  • 6Cantoni, A., Butler, P.: Eigenvalues and eigenvectors of symmetric centrosymmetric matrices. Linear Algebra Appl., 13, 275-288 (1976).
  • 7Weaver, J. R.: Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, eigenvectors. Amer. Math. Monthly, 92, 711-717 (1985).
  • 8Lee, A.: Centrohermitian and skew-centrohermitian matrices. Linear Algebra Appl., 29, 205-210 (1980).
  • 9Hell, R. D., Bates, R. G., Waters, S. R.: On centrohermitian matrices. SIAM J. Matrix Anal. Appl., 11(1),128-133 (1990).
  • 10Hell, R. D., Bates, R. G., Waters, S. R.: On perhermitian matrices. SIAM J. Matrix Anal. Appl., 11(2),173-179 (1990).

共引文献8

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部