期刊文献+

一种基于模糊逻辑的图像自适应去噪算法 被引量:5

An Adaptive Image De-noising Algorithm Based on Fuzzy Logic
下载PDF
导出
摘要 为克服单一使用中值滤波方法去除脉冲噪声会造成图像细节信息丢失,使图像变模糊的缺陷,提出一种新的基于模糊逻辑的图像自适应去噪算法.新算法通过分析像素不同方向邻域像素灰度值分布情况来检测脉冲噪声点,另外为更好地保持图像边缘等细节特征,使用改进MMEM(maximum-minimum exclusive median)算法对噪声像素点的灰度值进行估计.最后,新算法通过引入模糊逻辑规则,更加合理地进行噪声污染像素点的灰度值复原.仿真结果表明,与其他改进中值滤波算法相比新算法在去除脉冲噪声时能取得更好的效果. A new adaptive image de-noising algorithm based on fuzzy logic is proposed by analyzing the deficiencies of median filter when it is used to eliminate impulsive noise. The new algorithm for detection of noise points is based on grayscale distribution of neighboring pixels in different directions, and it uses the improved algorithm of maximum-minimum exclusive median method to estimate the gray level of current noisy pixels. Introducing the fuzzy logic rules into the new algorithm, the gray level of noisy pixels will be restored more reasonably. Simulation results show that the new algorithm may bring about better effect in eliminating impulsive noise in comparison with the improved median filter methods.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第6期777-780,共4页 Journal of Northeastern University(Natural Science)
基金 辽宁省自然科学基金资助项目(20042034)
关键词 图像处理 模糊逻辑 隶属函数 脉冲噪声 中值滤波 image processing fuzzy logic membership function impulsive noise median filter
  • 相关文献

参考文献10

  • 1Arce G R,McLoughlin M P.Theoretical analysis of the MAX median filter[J].IEEE Trans Acoust Speech Signal Processing,1987,35(1):60-69.
  • 2Lee Y H,Tantaratana S.Decision-based order statistics filters[J].IEEE Trans Acoust Speech Signal Processing,1990,38(3):406-420.
  • 3Gabbouj M,Coyle E J,Neal J,et al.An overview of median and stack filtering[J].Circuits Syst Signal Processing,1992,11(1):7-45.
  • 4Sun T,Neuvo Y.Detail-preserving median based filters in image processing[J].Pattern Recognition,1994,15(4):341-347.
  • 5Abreu E,Lightstone M,Mitra S K.A new efficient approach for the removal of impulse noise from highly corrupted images[J].IEEE Trans on Image Process,1996,5(6):1012-1025.
  • 6董立菊,于戈.一种有效的图像二值化方法[J].东北大学学报(自然科学版),2004,25(12):1149-1152. 被引量:17
  • 7Cheng H D,Chen Y H,Sun Y.A novel fuzzy entropy approach to image enhancement and thresholding[J].Signal Processing,1999,75(3):277-301.
  • 8Bergh F,Engelbrecht A P.A study of particle swarm optimization particle trajectories[J].Information Sciences,2006,176(1):937-971.
  • 9Han W,Lin J.Minimum-maximum exclusive mean(MMEM) filter to remove impulse noise from highly corrupted images[J].Electron Lett,1997,33(2):124-125.
  • 10Pok G,Liu J C,Nair A S.Selective removal of impulse noise based on homogeneity level information[J].IEEE Trans on Image Processing,2003,12(1):85-92.

二级参考文献9

  • 1Sankur B, Sezgin M. A survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging, 2004,13(1):146-165.
  • 2Trier O D, Jain A K. Goal-directed evaluation of binarization methods[J]. IEEE Trans Pattern Anal Machine Intell, 1995,17:1191-1201.
  • 3Trier O D, Taxt T. Evaluation of binarization methods for document images[J]. IEEE Trans Pattern Anal Machine Intell, 1995,17:312-315.
  • 4Pal N R, Pal S A. Review on image segmentation techniques[J]. Pattern Recognition, 1993,26:1277-1294.
  • 5Sahoo P K, Sotlani S, Wang A K C, et al. A survey of thresholding techniques[J]. Comput Vis Graph Image Process, 1988,41:233-260.
  • 6Otsu N A. Threshold selection method from grey-level histograms[J]. IEEE Trans Syst, Man, Cybern, 1979,8:62-66.
  • 7Ye X, Cheriet M, Suen C Y. Stroke-model-based character extraction from gray-level document images[J]. IEEE Trans Image Processing, 2001,10:1152-1161.
  • 8Duda R O, Hart P E, Stork D G. Pattern classification[M]. New York: Wiley, 2001.
  • 9Theodoridis S, Koutroumbas K. Pattern recognition[M]. London: Academic Press, 2003.

共引文献16

同被引文献40

引证文献5

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部