期刊文献+

基于支持向量机与遗传算法的发酵过程软测量建模 被引量:12

Soft-Sensing Modeling of a Fermentation Process Through Support Vector Machines and Genetic Algorithms
下载PDF
导出
摘要 提出了基于支持向量机的生物量浓度在线估计软测量建模方法,采用遗传算法进行模型输入的选择与支持向量机参数的选取,目的是找到对模型估计结果贡献最大的输入特征变量,降低了输入空间维数,缩小了求解问题的规模,从而减低计算方面的难度,减少了训练实际,同时又通过参数的调整,得到更好的决策函数,提高支持向量机的性能.模型的训练与验证数据都是取自实际的实验过程——诺西肽发酵.结果表明采用遗传算法进行优化的支持向量机软测量模型对生物量质量浓度具有好的预估性能. A soft-sensing model is developed for on-line estimate of biomass concentration based on support vector machines. And genetic algorithms are introduced in selection of model input and the parameters of support vector machines. The purpose is to find out the input characteristic variables which contribute most to the model' s estimation result for reducing the number of dimensions of space to input and scope of the problem to solve, thus decreasing the difficulties in computation and training practice. Meanwhile, the decision function can be obtained better to improve the performance of support vector machines by way of readjusting parameters. The training/verifying data of the model are all based on the actual experimental process, i.e. Nosiheptide fermentation. Result shows that soft-sensing model optimized by genetic algorithms is highly beneficial to the estimate of biomass concentration.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第6期781-784,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60674063 60374003) 流程工业综合自动化教育部重点实验室开放课题(PAI200509)
关键词 支持向量机 遗传算法 软测量 发酵 生物量质量浓度 support vector machine genetic algorithm soft-sensing fermentation biomass concentration
  • 相关文献

参考文献10

  • 1桑海峰,王福利,何大阔,张大鹏.发酵过程中生物量浓度的在线估计[J].东北大学学报(自然科学版),2006,27(6):602-605. 被引量:6
  • 2Dochain D,Perrier M.Dynamical modeling,analysis,monitoring and control design for nonlinear bioprocesses[J].Advances in Biochemical Engineering,1997,56:149-197.
  • 3James S,Budman H.On-line estimation in bioreactors:a review[J].Reviews in Chemical Engineering,2000,16(4):311-340.
  • 4Tham M T,Morris A J.Soft-sensing:a solution to the problem of measurement delays[J].Chemical Engineering Research & Design,1989,67:547-554.
  • 5Vapnik V.The nature of statistical learning theory[M].New York:Springer,1995.
  • 6王小平 曹立明.遗传算法理论、应用与软件实现[M].西安:西安交通大学出版社,2003..
  • 7Agarwal M,Jade A M.Support vector machines:a useful tool for process engineering applications[J].Chemical Engineering Process,2003,99(1):57-62.
  • 8Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 9Smola A J.Learning with kernels[D].Berlin:Berlin TU,1998.
  • 10Sang H F,Wang F L.Detection of element content in coal by pulsed neutron method based on an optimized back-propagation neural network[J].Nuclear Instruments and Methods in Physics Research B,2005,239(3):202-208.

二级参考文献10

  • 1贾明兴,王福利,何大阔.基于RBF神经网络的传感器非线性故障鲁棒诊断[J].东北大学学报(自然科学版),2004,25(8):719-722. 被引量:5
  • 2CristianiniN Shawe-TaylorJ 李国正译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 3Dochain D,Perrier M.Dynamical modeling,analysis,monitoring and control design for nonlinear bioprocesses[J].Advances in Biochemical Engineering,1997,56(2):149-197.
  • 4James S,Budman H.On-line estimation in bioreactors:a review[J].Reviews in Chemical Engineering,2000,16(4):311-340.
  • 5Vanek M.On-line estimation of biomass concentration using a neural network and information about metabolic state[J].Bioprocess Biosyst Engineering,2004,27(1):9-15.
  • 6Vapnik V.The nature of statistical learning theory[M].New York:Springer,1995.50-75.
  • 7Agarwal M,Jade A M.Support vector machines:a useful tool for process engineering applications[J].Chemical Engineering Process,2003,99(1):57-62.
  • 8Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 9陈坚,堵国成.发酵工程实验技术[M].北京:化学工业出版社,2004.290-292.
  • 10Hastie T.统计学习基础数据挖掘、推理与预测[M].范明,柴玉梅,译.北京:电子工业出版社,2004.149-152.

共引文献19

同被引文献113

引证文献12

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部