期刊文献+

一类2-共振六角系统的性质与构造 被引量:4

The Characterization of a Kind of 2-Resonant Hexagonal System
下载PDF
导出
摘要 刻画了任意两个内部六边形都无公共边的2-共振六角系统的一些性质,并且给出了一种构造这种六角系统的方法.证明了:设H是一个任意两个内部六边形都无公共边的六角系统.如果它没有弦(chord).那么H是2-共振的当且仅当H∈■或H是一个冠,或是一个六边形,或是一个T_n.如果它有弦,则H可由构造程序生成. To characterize some properties of these 2-resonant hexagonal systems in which any two interior hexagons have no common edge, and offer a kind of method to construct this kind of hexagonal system. Then proving the following result: Let H be a hexagonal system in which any two interior hexagons have no common edge. If it has no chord, then H is 2-resonant if and only if H∈R or H is a crown, or a hexagon or a %. If it has chord , then H can be produced by the constructing procedure.
作者 江蓉 任海珍
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期1-5,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金(10461009) 教育部自然科学重点研究资助项目(205170)
关键词 六角系统 完美匹配 共振 hexagonal system perfect matching chord resonant
  • 相关文献

参考文献7

  • 1Cyvin S J,Gutman I.Kekul Strutures in Benzenoid Hydrocarbons[M].Berlin:Springer,1988.
  • 2Gutman I,Cyvin S J.Introduction to the Theory of Benzenoid Hydrocarbons[M].New York:Springer.1989.
  • 3Cyvin S J,Brunvoll J,Cyvin B N.Theory of Coronoid Hydrocarbons[M].New York:Springer,1991.
  • 4Lovász L,Plummer M D.Matching Theory[J].Annals of Discrete Mathematics,1986,29:121 -142.
  • 5Zhang Fuji,Chen Rongsi.When each hexagon of a hexagonal system covers it[J].Discrete Applied Mathematics,1993,30:63-75.
  • 6Zheng Maolin.k-resonant benzenoid systems[J].J Mol Struct,1991,231:321 -334.
  • 7Zhang Fuji,Wang Lusheng.k-resonance of open-ended carbon nanotubes[J].Journal of Mathematical Chemistry,2004,35:87-103.

同被引文献24

  • 1姜琴,陈暑波,吴继春,黄子文.圆长为k的n阶单圈图中第二大Merrifield-Simmons指数[J].南华大学学报(自然科学版),2006,20(3):35-38. 被引量:4
  • 2马海成.路并的匹配等价图数[J].西南师范大学学报(自然科学版),2007,32(3):6-9. 被引量:10
  • 3Bandy J A, Murty U S R. Graph Theory with Application [M]. Amsterdam: The Macmillan Press, 1976:15 --33.
  • 4Prodinger H, Tichy R F. Fibonacci Numbers of Graphs [J]. The Fibonacci Quarterly, 1982, 20(1): 16 -21.
  • 5Pedersen A S, Vestergaard P D. The Number of Independent Sets in Unicyclic Graphs [J]. Discrete Appl Math, 2005, 152(2) : 246 -- 256.
  • 6Wang Bo Ye Chengfu.The Third Largest Value of o-index about Unicyclic Graphs .山西大学学报:自然科学版,2008,31(3):24-27.
  • 7Merrifield R E, Simmons H E. Topological Methods in Chemistry [M]. New York: Wiley, 1989: 17- 36.
  • 8Zhao Haixing, Li Xueliang. On the Fibonacci Numbers of Trees [J]. The Fibonaeci Quartly, 2005, 53(2): 26 -33.
  • 9Li X, Li Z, Wang L. The Inverse Problems for Some Topological Indices in Combinatiorial Chemistry [J]. Computational Biology, 2003, 10(1):47 -- 55.
  • 10Comtet L. Advanced Combinatorics[M]. Boston: Reidel, 1974.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部