期刊文献+

一种新的关联规则抽样算法 被引量:6

A new sampling algorithm for association rule
下载PDF
导出
摘要 针对目前经典的关联规则挖掘Apriori算法需对数据库多次扫描费时多计算量大,而抽样扫描会造成挖掘精确度下降等问题,采用控制样本频繁项目集的方法,利用频繁1项集进行抽样处理,对关联规则挖掘的抽样操作和精度控制进行研究,提出了基于抽样操作的关联规则挖掘算法——HAC算法。理论分析及性能试验结果表明:HAC算法能够有效缩减数据库规模,至少少扫描数据库1次,提高了关联规则挖掘的效率,同时其计算精度不受影响。 In order to reduce the long time spent for scanning the database by using Apriori algorithm, which may descend the mining accuracy, the research on the sample operation and precision control with the help of frequent itemset, especially, the frequent 1-item-set is presented in this paper. The HAC algorithm based on sampling was de- signed. The results in theory and capability experiment indicated that HAC algorithm could decrease the scanning times by at least once, promote the efficiency of mining and improve the computation precision.
出处 《中国农业大学学报》 CAS CSCD 北大核心 2007年第3期85-88,共4页 Journal of China Agricultural University
基金 国家自然科学基金资助项目(1037113160573158)
关键词 关联规则 抽样 准则系数 APRIORI算法 HAC算法 association rule sampling guide coefficient Apriori algorithm HAC algorithm
  • 相关文献

参考文献11

二级参考文献32

  • 1杜剑峰,李宏,陈松乔,陈建二.单调和反单调约束条件下关联规则的挖掘算法分析[J].计算机科学,2005,32(6):142-144. 被引量:3
  • 2H Mannila,H Toivonen,A I Verkamo.Efficient algorithms for disco- verying association rules[C].In:Proc AAAI'94 Workshop Knowledge Discovery in Databases(KDD'94) ,Seatfle,WA, 1994:181-192.
  • 3R Agrawal,T Imielinski,A Swami.Mining association rules between sets of items in large databases[C].In:Proceedings of the ACM SIGMOD Conference on Management of data,1993:207-216.
  • 4Carlos Domingo,Ricard Gavald,Osamu Watanabe.Practical algorithms for on-line sampling[C].In:Proc of the First International Conference on Discovery Science,Lecture Notes in Computer Science, 1998-12.
  • 5Carlos Domingo, Ricard Gavald, Osamu Watanabe.On-line Sampling Methods for Discovering Association Rules[R].Tech Rep C-126 ,Dept of Math and Computing Science,Tokyo Institute of Technology.
  • 6R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In Proceedings of the ACM SIGMOD Conference on Management of data(SIGMOD'93), edited by P.Buneman,and S.Jajodia, 1993,Washington DC,207-216.
  • 7H. Toivonen. Sampling large databases for association rules. In 22th International Conference on Very Large Databases(VLDB'96), September 1996, Mumbay, India, 134-145.
  • 8Carlos Domingo, Ricard Gavalda, Osamu Watanabe, Adaptive Sampling Methods for Scaling Up Knowledge Discovery Algorithms, Data Mining Knowledge Discovery,2002,Vol2: 131-152.
  • 9Agrawal R,Shafer J C. Parallel mining of Association rules: Design,Implementation,and Experience [J]. IEEE Transactions on Knowledge and Data Engineering, 1996,8(6) : 962-969
  • 10Agrawal R, Srikant R. Fast algorithms for mining associationrules [A]. In: Proceedings of the 20th International Conference on Very Large Databases [C], Santiago, Chile, 1994. 487-499

共引文献28

同被引文献69

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部