期刊文献+

基于小波变换的边际电价神经网络预测新模型 被引量:8

A Novel MCP Forecasting Model Based on Wavelet Transformation and Neural Network Ensemble in Day-ahead Electricity Market
下载PDF
导出
摘要 提出了一种基于小波变换和群智能演化的神经网络集成预测新模型,对日前交易边际电价进行预测。首先利用小波变换将历史边际电价序列分解为高频和低频部分,并分别构造学习样本作为神经网络集成的输入;然后将边际电价预测问题转化为神经网络实际输出与预测输出误差最小化问题,其寻优过程采用粗—细二阶段学习算法。在第1阶段,采用粒子群优化算法把神经网络的结构和权重映射成问题空间中的粒子,通过粒子速度和位置更新方程进行粗学习,获得多个相对占优的神经网络结构和初始权重并构成神经网络集成单元;在第2阶段,采用梯度学习算法和交叉验证对神经网络集成单元的权重进行细学习,并以误差最小的神经网络集成单元的输出作为神经网络集成预测模型的输出。美国加州日前交易电力市场边际电价预测算例表明,该预测方法可以获得较高的预测精度,且优于BP神经网络方法和ARIMA预测方法。 A novel neural network ensemble (NNE) model based on wavelet transformation and swarm intelligence evolution is proposed to forecast market clearing price (MCP) in day-ahead electricity market. Firstly, MCP series is decomposed into low- frequency and high-frequency parts by wavelet transformation, and learning samples for NNE input are constructed. Then, MCP forecasting problem is converted into error minimization problem between actual output and desired output, and extensive and intensive learning algorithms are used in two stages. In the first stage, construction and weights of neural network are designed to be particles in problem space, neural network are extensively trained by particle velocity and position update equations of particle swarm optimization, and NNE units with different constructions and initial weights are constructed. In the second stage, weights in units are intensively trained by gradient learning algorithm and cross validation, and the unit output with minimal error is regarded as the output of NNE. The novel model is applied to MCP forecasting of California day-ahead electricity market. Results show that the model can achieve satisfactory forecasting accuracy and is superior to BP neural network and ARIMA forecasting model.
出处 《电力系统自动化》 EI CSCD 北大核心 2007年第12期40-44,共5页 Automation of Electric Power Systems
关键词 电力市场 边际电价 小波变换 群智能 粒子群优化 人工神经网络 神经网络集成 electricity market market clearing price wavelet transformation swarm intelligence particle swarm optimization artificial neural network neural network ensemble
  • 相关文献

参考文献19

  • 1CONTRERAS J,ESPINOL A R,NOGALES F J,et al.ARIMA models to predict next-day electricity prices.IEEE Trans on Power Systems,2003,18(3):1014-1020.
  • 2黄日星,康重庆,夏清.电力市场中的边际电价预测[J].电力系统自动化,2000,24(22):9-12. 被引量:68
  • 3胡朝阳,孙维真,汪震,王康元,甘德强,韩祯祥.考虑市场力的短、中、长期电价预测[J].电力系统自动化,2003,27(22):16-22. 被引量:85
  • 4CONEJO A J,PLAZAS M A,ESPINOLA R,et al.Day-ahead electricity price forecasting using the wavelet transform and ARIMA models.IEEE Trans on Power Systems,2005,20(2):1035-1042.
  • 5GARCIA R C,CONTRERAS J,AKKEREN M V,et al.A GARCH forecasting model to predict day-ahead electricity prices.IEEE Trans on Power Systems,2005,20(2):867-873.
  • 6NOGALES F J,CONTRERAS J,CONEJO A J,et al.Forecasting next-day electricity prices by time series models.IEEE Trans on Power Systems,2002,17(2):342-348.
  • 7DU Songhuai,HOU Zhijian,JIANG Chuanwen.A new shortterm grey forecasting procedure of spot price.Journal of Grey System,2002,14(4):351-358.
  • 8刘广建,胡三高,戴俊良.电力系统边际电价的混沌特性及预测[J].中国电机工程学报,2003,23(5):6-8. 被引量:36
  • 9SZKUTA B R,SANABRIA L A,DILLON T S.Electricity price short-term forecasting using artificial neural networks.IEEE Trans on Power Systems,1999,14(3):851-857.
  • 10李彩华,郭志忠,王志伟.混合式短期边际电价预测模型[J].电力系统自动化,2002,26(21):29-33. 被引量:25

二级参考文献68

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2[8]Gao Feng, Guan Xiaohong, Gao Xiren. Forecast Power Market Clearing Price Using Neural Network. In: Proceedings of 3rd World Congress on Intelligent Control and Automation. Hefei: 2000
  • 3[10]Fahlman S E, Lebiere Christian. The Cascade-correlation Learning Architecture. In: Advances in Neural Information Processing Systems (NIPS89) Morgan-Kaufmann, San Mateo CA: 1990. 524~532
  • 4[11]Fahlman S E. Faster-learning Variations on Back-propagation: An Empirical Study. In: Proceedings of the 1988 Connectionist Models Summer School. Morgan Kaufmann: 1988
  • 5[1]Ni Erna, Luh P B. Forecasting Power Market Clearing Price and Its Discrete PDF Using a Bayesian-based Classification Method.In: Power Engineering Society Winter Meeting. Columbus (USA): 2001.1518~1523
  • 6[2]Guan X H, Lun P B. Integrated Resource Scheduling and Bidding in the Deregulated Electric Power Market: New Challenges. Discrete Event Dynamic Systems: Theory and Applications, 1999,9(4)
  • 7[3]Skantze Petter,Ilic Marija. Stochastic Modeling of Electric Power Prices in a Multi-market Environment. In:Power Engineering Society Winter Meeting. Singapore: 2000. 1109~1114
  • 8[4]Weber J D, Overbye T J. A Two-lever Optimization Problem for Analysis of Market Bidding Strategies. In: Power Engineering Society Summer Meeting. Edmonton: 1999. 682~687
  • 9[6]Szkuta B R, Sanabria L A, Dillon T S. Electricity Price Short-term Forecasting Using Artificial Neural Networks. IEEE Trans on Power Systems, 1999, 14(3):851~857
  • 10[7]Wang A, Ramsay B. Prediction of System Marginal Price in the UK Power Pool Using Neural Networks. In:Proceedings of IEEE International Conference on Neural Networks. Houston (USA): 1997. 2116~2120

共引文献226

同被引文献117

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部