期刊文献+

鲁棒PID控制算法在聚丙稀反应过程中的应用研究

Research on robust PID Control Algorithm in Polypropylene Reaction Process
下载PDF
导出
摘要 应用一种简单而鲁棒性较强的鲁棒PID控制算法,即将模型输出上下界和统计的两种辨识方法应用到聚丙稀反应过程带有滞后环节对象的鲁棒辨识中,将所得的PID控制器参数区间和MinMax算法相结合来进行PID参数整定。仿真实验结果表明该算法具有良好的控制效果。最后分析、设计和实现了该算法。 A new,easy and robust control algorithm is applied. Namely, two new identification algorithms which include up and down borders method and statistical method.The first is used in the identification process of object with time delay in the process and the parameter span in the system transfer function is gotten. Furthermore, the PID parameters is self-adjusted by depending on PID controller parameter span and MinMax algorithm. The simulation result illustrates a good control effect of it. Finally, it is analyzed, designed and implemented.
出处 《苏州市职业大学学报》 2007年第2期61-63,共3页 Journal of Suzhou Vocational University
基金 广东省科技计划项目(2004B10301035)基金资助
关键词 聚丙稀反应过程 辨识 PID控制器 鲁棒性 Polypropylene Reaction Process Identification PID Controller
  • 相关文献

参考文献6

二级参考文献27

  • 1黄学俊,王书宁,戴建设.l_1系统辨识中的代数算法及其Worst-case误差[J].控制与决策,1996,11(1):52-57. 被引量:4
  • 2李旭辉.冯·诺伊曼[A].吴文俊.世界著名数学家传记[C].北京:科学出版社,1995.1 589.
  • 3[1]Elnaggar A, Dumont G A, Elshafei A L. Recursive Estimation for System of Unknown Delay [ A ]. Proceedings of the 28th IEEE Conference on Decision and Control [ C ]. 1989. 1809-1810.
  • 4[2]Bi Q,Cai W J,Lee E L,et al. Robust Identification of First-order Plus Dead-time Model from Step Response [ J]. Control Engineering Practice, 1999,7:71-77.
  • 5[3]Wang Q G, Zhang Y. Robust Identification of Continuous Systems with Dead-time from Step Response [ J ]. Automatica,2001,37:377-390.
  • 6[4]Wang L, Cluett W R. System Identification Based on Closedloop Step Response Data[ C ]. IEE Proc-Control Theory Appl,1994,141:107-110.
  • 7[5]Wang L, Cluett W R. Optimal Choice of Time-scalling Factor for Linear System Approximations Using Laguerre Models [ J ].IEEE Transactions on Automatic Control, 1994,39 ( 7 ): 1463-1467.
  • 8AUMANN R J. Game theory[A]. Eatwell J MilgateM, Newman P. Game Theory [C]. New York:W W Norton, 1989. 1-53.
  • 9BAUMOL W J, GOLDFELD S. Precursors in mathematical economics: an anthology , reprints of scarceworks in political economy[J]. London School of Economics, 1968,19(1) :6-7.
  • 10TODHUNTER I. A History of the Mathematical Theory of Probability from the Time of Passeal tothat of Laplace[M]. New York: Chelsea Publishing,1865. 105-108.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部