期刊文献+

自适应鲁棒H2控制及其在小型无人直升机航向控制中的应用 被引量:1

Adaptive robust H2 control for the yaw control of small-scale helicopter
下载PDF
导出
摘要 提出了一个新的鲁棒控制方法并将其应用到小型无人直升机的航向控制中。给出了直升机的非线性航向动力学模型并进行简化,然后线性化为具有仿射不确定性的线性模型。针对这个线性模型,基于线性矩阵不等式方法提出了具有自适应机制的鲁棒H2反馈控制器。这种设计方法可以降低固定增益控制器所固有的保守性,提高控制效果。数字仿真验证了设计方法的可行性。 This paper presents a robust controller design approach to the yaw control of a small-scale helicopter mounted on an experimental platform. The nonlinear yaw dynamic system was linearized into a linear system, which was modelled by an affine uncertainty model. Based on the linear matrix inequalities method, a novel robust H2 feedback controller with adaptive mechanisms was proposed for the linear system with guaranteed control performance. The design approach reduced conservatism inherent in robust control with a fixed gain controller and improved performances in time-response. Numerical simulations illustrated the theoretical developments.
出处 《高技术通讯》 CAS CSCD 北大核心 2007年第6期600-605,共6页 Chinese High Technology Letters
基金 863计划(2003AA421020)资助项目.
关键词 直升机 鲁棒控制 自适应控制 不确定性 H2控制 helicopter, robust control, adaptive control, uncertainty, H2 control
  • 相关文献

参考文献15

  • 1Leishman J G.Principles of Helicopter Aero Dynamics.Cambridge:Cambridge University Press,2000
  • 2Mettler B,Tischler M B,Kanade T.System identification of small-size unmanned helicopter dynamics.In:American Helicopter Society 55th Forum,Montreal,Canada,1999
  • 3Shim H,Koo T J,Hoffmann F,et al.A comprehensive study of control design for an autonomous helicopter.In:Proceeding of the 37th IEEE Conference on Decision and Control,Tampa,Florida USA,1998.3653-3658
  • 4Shin J,Nonami K,Fujiwara D,et al.Model-based optimal attitude and positioning control of small-scale unmanned helicopter.Robotica,2005,23(1):51-63
  • 5Kim H J,Shim D H.A flight control system for aerial robots:algorithms and experiments.Control Engineering Practice,2003,11(12):1389-1400
  • 6Walker D J,Postlethwaite I.Advanced helicopter flight control using two-degree-of freedom H∞ optimization.J Guidance,Control,and Dynamics,1996,19(2):461-468
  • 7Luo C C,Liu R F,Yang C D,et al.Helicopter H∞ control design with robust flying quality.Aerospace Science and Technology,2003,7(2):159-169
  • 8Postlethwaite I,Prempain E,Turkoglu E,et al.Design and flight testing of various H∞ controllers for the Bell 205 helicopter.Control Engineering Practice,2005,13(3):383-398
  • 9Takahashi M D.Helicopter flight-control design using an H2 method.In:Proceedings AIAA Guid.Nav and Control Conf,1991.1392-1416
  • 10Kau S W,Lee C H,Fang C H.Robust H2 control of norm-bounded uncertain continuous-time systems-An LMI approach.International Journal of Electrical Engineering,2005,12(1):25-32

同被引文献14

  • 1王春民,崔兴华.预测误差法参数辨识及其MATLAB仿真[J].系统仿真学报,2005,17(z2):145-147. 被引量:4
  • 2赵新刚,姜哲,韩建达,刘光军.模型直升机航向自适应保性能控制[J].系统仿真学报,2007,19(13):3047-3051. 被引量:4
  • 3Cai Guo-wei, Chen Ben-Mei, Peng Ke-mao, Dong Miao-bo, Tong H. Lee. Design and Implementation of a Nonlinear Flight Control Law for the Yaw Channel of a UAV Helicopter [C]// Proceedings of the 46th IEEE Conference on Decision and Control (S0191-2216). USA: IEEE. 2007: 1963-1968.
  • 4Guowei Cai, Ben M. Chen, Kemao Peng, Miaobo Dong, Tong H. Lee. Modeling and Control of the Yaw Channel of a UAV Helicopter [J].IEEE Transactions on Industrial Electronics (S0278-0046), 2008, 55(9): 3426-3434.
  • 5Guowei Cai, Ben M Chen, Tong H. Lee. Comprehensive Nonlinear Modeling of an Unmanned-Aerial-Vehicle Helicopter [C]// Proceedings of the 2008 AIAA Guidance, Navigation and Control Conference and Exhibit, 2008, AIAA-2008-7414. USA: AIAA, 2008.
  • 6Bernard Mettler. Identification Modeling and Characteristics of Miniature Rotorcraft [M]. Norwell, MA, USA: Kluwer Academic Publishers, 2003.
  • 7Raymond W. Prouty. Helicopter Performance, Stability, and Control [M]. Melbourne, FL, USA: Krieger Publishing Company, 2001.
  • 8David Hyunchul Shim. Hierarchical Flight Control System Synthesis for Rotorcraft-based Unmanned Aerial Vehicles [D]. Berkeley, CA, USA: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Fall 2000.
  • 9Sung K. Kim, Dawn M. Tilbury. Mathematical Modeling and Experimental Identification of an Unmanned Helicopter Robot with Flybar Dynamics [J]. Journal of Robotic Systems (S0741-2223), 2004, 21(3): 95-116.
  • 10Robert K. Heffiey, Marc A. Mnich. Minimum-Complexity Helicopter Simulation Math Model [R]. California, USA: NASA Ames Research Center, 1988.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部