期刊文献+

利用AMSR-E资料反演实时海面气象参数的个例 被引量:3

Real-time sea surface meteorological parameters retrieved from AMSR-E——a case
下载PDF
导出
摘要 利用2005年1月的AMSR-E卫星资料作为一个例子,探讨了AMSR-E的12个通道的亮温与海表温度、海面气温、湿度及风速4个气象参数的关系,把亮温通道分3大类组合分别进行参数模拟,确定模拟这4个气象参数最合理的通道组合,并利用多参数回归方法建立海表温度、海面气温、湿度及风速与亮温之间的经验关系。反演结果与TAO浮标实测资料进行了比较,实时海表温度、海面气温、湿度及风速的均方根差分别为0.53℃、0.74℃、3.2%和1.1m/s。是一个利用卫星资料同时反演四个参数(海表温度、海面气温、湿度及风速)的成功例子,为计算海气热通量提供了数据,并为实时观测和研究气候变化提供了一种简单而有效的方法。 The AMSR-E satellite data in Jan 2005 was applied as a case to estimate four meteorological parameters: sea surface temperature (SST), air temperature over sea (Ta), humidity (RH) and wind speed (WS). First, bright temperature (TB) from the twelve channels of AMSR-E were used to calculate their relativities among these four parameters. Then three kinds of different combinations with channel were proposed to do the simulation. Finally, a kind of combination with frequency was chosen as the best way to do the retrieval after the errors and relativities of the results are considered. The statistical relations were found on the AMSR-E TB data and sea surface meteorological parameters with multi-parame- ters regression method. The retrieved results in the Pacific Ocean near the equator were compared with the data observed by TAO buoys. Their root mean square errors are 0.53℃ (SST), 0.74℃ (Ta), 3.20% (RH) and 1.1m/s (WS), respectively. This is a successful case that AMSR-E TB data could be applied to retrieval of the four real-time parameters with good accuracy. Long term data should be used to complement this study.
出处 《高技术通讯》 CAS CSCD 北大核心 2007年第6期633-637,共5页 Chinese High Technology Letters
基金 863计划(2001AA633060)资助项目.感谢美国国家冰雪数据中心(National Snow and Ice Data Center,NSIDC)提供的AMSR-E卫星资料和T0GA-TA0提供的TA0浮标资料.感谢863项目2001AA633060给予本研究的资助.
关键词 AMSR-E 海表温度 海面气温 湿度 风速 AMSR-E, sea sudace temperature (SST), air temperature, humidity, wind speed
  • 相关文献

参考文献9

  • 1海专.美国“水”卫星概况[J].国际太空,2002(9):6-7. 被引量:1
  • 2Liu G R,Liu C C,Kuo T H.A contrast and comparison of near-sea surface air temperature/humidity from GMS and SSM/I data with an improved algorithm.IEEE Trans Geosci Remote Sensing,2001,39(10):2148-2157
  • 3Jones C,Peterson P,Gautier C.A new method for deriving ocean surface specific humidity and air temperature:an artificial neural network approach.J App Meteorol,1999,38:1229-1245
  • 4He Y J,Wu Y M,Zhang B,et al.Near sea surface air temperature estimated from NOAA data.In:International Geoscience and Remate Sensing Symposium,Seoul,Korea,2005,3:1845-1848
  • 5孟雷,何宜军,伍玉梅.基于SSM/I数据的神经网络方法反演海面风速[J].高技术通讯,2006,16(7):763-770. 被引量:7
  • 6Hosoda K,Kawamura H.Global space-time statistics of sea surface temperature estimated from AMSR-E data.G Res Letter,2004,31:L72021-L72025
  • 7Akira S,Keiji I,Misako K,et al.AMSR/AMSR-E Algorithm Development and data distribution.In:International Geoscience and Remate Sensing Symposium,Toulouse,France,2003,1:672-673
  • 8Shibata A.Calibration of AMSR-E SST toward a monitoring of global warming.In:International Geoscience and Remate Sensing Symposium,Seoul,Korea,2005,5:3448-3449
  • 9毛克彪,施建成,李召良,覃志豪,贾媛媛.用被动微波AMSR数据反演地表温度及发射率的方法研究[J].国土资源遥感,2005,17(3):14-17. 被引量:33

二级参考文献33

  • 1Wentz F J.User's manual of SSM/I antenna temperature tapes,RSS technical report 120191.1101 College Ave.,suite 220,SANTA ROSE,CA 95404:Remote Sensing Systems,1991.3-4
  • 2Goodberlet M A,Swift M A,Wilkson J C.Remote sensing of ocean surface winds with the special sensor microwave/imager.Journal of Geophysics Research,1989,94:14547-14555
  • 3Goodberlet M A,Swift M A.Improved retrievals from the DMSP wind speed algorithm under adverse weather conditions.IEEE Transactions on Geoscience and Remote Sensing,1992,30:1076-7077
  • 4Petty G W.A comparison of SSM/I algorithms for the estimation of surface wind.In:Proceedings shared processing network,DMSP SSM/I algorithm symposium.Monterrey,CA,1993.8-10
  • 5Wentz F J.Measurement of oceanic wind vector using satellite microwave radiometers.IEEE Transactions on Geoscience and Remote Sensing,1992,30(5):960-972
  • 6Thiria S C Mejia,Badran F,Crepon M.A neural network approach for modeling nonlinear transfer function:application for wind retrieval from spacebom scatterometer data.Journal of Geophysics Research,1993,88:22827-22841
  • 7Stogryn A P,Butler C T,Bartolac T J.Ocean surface wind retrievals from special sensor microwave imager data with neural networks.Journal of Geophysics Research,1994,99:981-984
  • 8Krasnopolsky V,Gemmill W H,Breaker L C.A neural network multiparameter algorithm for SSM/I ocean retrievals:comparisons and validations.Remote Sensing of Environment,2000,73:133-142
  • 9Meissner T,Wentz F J.A radiative transfer model function for 85.5 GHz special sensor microwave imager ocean brightness temperatures.Radio Science,2003,38(4):8066
  • 10Wick G A,Bates J J,Gottschall C C.Observational evidence of a wind direction signal in SSM/I passive microwave data.IEEE Transactions on Geoscience and Remote Sensing,2000,38(2):823-837

共引文献38

同被引文献45

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部