期刊文献+

一种基于变分的网格运动方法及其在边界层问题数值求解中的应用

A Moving Mesh Method Based on Variational Problem for Boundary Layer Problem
下载PDF
导出
摘要 从控制网格以适应解的性态并具有一定光滑性的朴素思想出发,建立了一种基于变分的网格运动方法,并给出了两种简单的数值求解方法.以两点边值问题及边界层问题为例,对这一网格运动方法进行了数值试验并得到了满意的数值结果,结果说明本方法成功地控制了网格的分布. A new moving mesh method is given in this dissertation. Key idea of our method is that the mesh should adapt the solutions' character and have some smoothness. The distribution of the nodes is gotten by a variational problem, whose Euler-Lagrange equation is the new moving mesh equation. Why and how to form the new method is introduced in details. Numerical results in two-point boundary problems and boundary layer problems are very encouraging and clearly to show that in many cases the method can control the mesh motion.
作者 李征 王双虎
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期15-21,共7页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家973重点基础研究发展计划(2005CB32170X)资助项目
关键词 运动网格 变分法 控制函数 欧拉-拉格朗吕方程 moving mesh, variational method, monitor function, Euler-Lagrange equation
  • 相关文献

参考文献9

  • 1C de Boor.Good approximation by splines with variable knots Ⅱ[M]// Springer Lecture Notes Series 363.Berlin:Springer-Verlag,1973.
  • 2White A B.On selection of equidistributing meshes for two-point boundary-value problems[J].SIAM Journal on Numerical Analysis,1979,16(3):472-502.
  • 3Huang W,Ren Y,Russell R D.Moving mesh partial differential equations (MMPDEs) based on the equidistribution principle[J].SIAM Journal on Numerical Analysis,1994,31:709-730.
  • 4Miller K,Miller R N.Moving finite element Ⅰ[J].SIAM Journal on Numerical Analysis,1981,18:1 019-1 032.
  • 5Miller K.Moving finite element Ⅱ[J].SIAM Journal on Numerical Analysis,1981,18:1 033-1 057.
  • 6Carlson N,Miller K.Design and application of a gradient-weighted moving finite code,Part Ⅰ,1-D[J].SIAM Journal on Scientific Computing,1998,19:728-765.
  • 7Carlson N,Miller K.Design and application of a gradient-weighted moving finite code,Part Ⅱ,2-D[J].SIAM Journal on Scientific Computing,1998,19:766-798.
  • 8Miller K.A geometrical-mechanical interpolation of gradient-weighted moving finite elements[J].SIAM Journal on Numerical Analysis,1997,34:67-90.
  • 9Cao W,Huang W,Russell R D.A moving mesh method based on the geometric conservation law[J].SIAM Journal on Scientific Computing,2002,24(1):118-142.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部