摘要
该文将机械化数学方法应用于偏微分方程领域,建立了构造一类非线性发展方程孤立波解的一种统一算法,并在计算机数学系统上加以实现,推导出了一批非线性发展方程的精确孤立波解.算法的基本原理是利用非线性发展方程孤立波解的局部性特点,将孤立波表示为双曲正切函数的多项式.从而将非线性发展方程(组)的求解问题转化为非线性代数方程组的求解问题.利用吴文俊消元法在计算机代数系统上求解非线性代数方程组,最终获得非线性发展方程(组)的准确孤立波解.
In this paper the Mathematics-Mechanization method is applied the field of differential equations. A unifying algorithm for constructing solitary wave solutions for a class of nonlinear evolution equations are given, and implemented in a.computer algebraic system.Exact solitary wave solutions of a great deal of nonlinear equations are obtained. The algorithm is based on the fact that the solitary wave solutions are essentially of a localized nature. Seeking solitary wave solutions which are in terms of hyperbolic tangent function gives a nonlinear system of algebraic equations. The system is solved by using Wu Elimination and the exact solutions of nonlinear evolution equation(s) are then obtained.
出处
《数学物理学报(A辑)》
CSCD
北大核心
1997年第1期81-89,共9页
Acta Mathematica Scientia
基金
国家自然科学基金
甘肃省自然科学基金
关键词
非线性波方程
孤立波解
符号计算
Nonlinear evolution equations, Solitary wave solutions, Symbolic computation