期刊文献+

基于PCA/NDVI的森林覆盖遥感信息提取方法研究 被引量:17

AN APPROACH TO THE EXTRACTION OF REMOTELY-SENSED INFORMATION OF FOREST COVERAGE BASED ON PCA/NDVI
下载PDF
导出
摘要 以大兴安岭为试验区,提出将主成分分析(PCA)得到的第1分量、归一化植被指数(NDVI)和Landsat TM1~TM7某一波段进行合成,增强森林覆盖区和背景区信息的反差,并利用最大似然法对影像进行监督分类,分类精度超过92%。通过对不同云雾量和森林覆盖的2个时相影像试验表明,本方法提高了遥感影像森林覆盖信息提取的自动化程度和精度。 With the Daxinganling area as the experimental site, the authors used the PCA (Principal Components Analysis) to get the first weight and the results of the NDVI ployed a certain band in the LandSat TM1 to 7 to realize the the contrast between the forest information and the background (Normalized Difference Vegetation Index) , and emcombination of the wave band, which could enhance information. The study also used the method of maximum likelihood to realize the supervised classification of the images, whose accuracy could exceed 92%. This paper presents two experimental investigation images with different quantities of cloud and different extents of forest coverage. This investigation shows that this method can improve the automation and precision in the extraction of the forest coverage information.
出处 《国土资源遥感》 CSCD 2007年第2期82-85,共4页 Remote Sensing for Land & Resources
基金 国家科技基础条件平台工作重点项目"森林灾害的监测 预警与管理系统平台(2003DIA6N007)"
关键词 主成分分析 NDVI 波段组合 监督分类 邻域分析 最大似然法 Principal components analysis Normalized difference vegetation index Band combinations Supervised classification Neighborhood analysis Maximum likelihood
  • 相关文献

参考文献7

二级参考文献60

  • 1游代安,蒋定华,余旭初.GIS辅助下的Bayes法遥感影像分类[J].测绘科学技术学报,2001,22(2):113-117. 被引量:24
  • 2齐清文,何大明,邹秀萍,姜莉莉,李晋.云南沿边境地带生态环境3S监测、评价与调控研究[J].地理科学进展,2005,24(2):1-12. 被引量:25
  • 3黎夏.形状信息的提取与计算机自动分类[J].环境遥感,1995,10(4):279-287. 被引量:46
  • 4朱述龙 张占睦.遥感图像获取与分析[M].北京:科学出版社,2000,4..
  • 5周成虎 骆剑承 等.遥感影像地学理解与分析[M].北京:科学出版社,2001..
  • 6Singh A.Digital change detection techniques using remotely-sensed data[J].International Journal of Remote Sensing,1989,10(6):989-1003.
  • 7Salu and Y, Tilton J. Classification of Multi - spectral Image Data by the Binary Biamond Neural Net works and by Nonparametric,Pixel - by - Pixel Methods [ J ]. IEEE Trans. On Geoscience and Remote Sensing, 1993,31 (3) :606 - 617.
  • 8Yamazaki T, Gingras D. Image Classification Using Spectral and Information Based on MAR Models [ J ]. IEEE Trans. on Image Processing, 1995,14 (9): 1333 - 1339.
  • 9James J, Timothy J, et al. An improved hybrid clustering algorithm for natural scienes [ J ]. IEEE Transaction on Geoscience and Remote Sensing,2000,38(2) :1016 - 1032.
  • 10SanRen H, Cheinlchang I. A generalized orthogonalalsub space projection approach to unsupervised multi - spectral image classification [ J]. IEEE Transaction on Geoscience and Remote Sensing, 2000,38(6) :2515 -2528.

共引文献129

同被引文献190

引证文献17

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部