期刊文献+

用于多电平QAM调制的新型的自恢复均衡技术的研究 被引量:9

The Study of New Self-Recovery Equalization Techniques for Multi-Level QAM Modulation
下载PDF
导出
摘要 本文对一种新的代价函数作了研究,提出一种适用于多电平QAM(MQAM)信号的自恢复均衡算法,克服了CMA算法对相位不敏感的缺点;并在此基础上提出了两种改进的均衡算法:概率算法和混合算法.理论分析和计算机模拟表明这两种算法的收敛性能优越,而且误码性能与传统的LMS均衡算法一致,是两种很实用的均衡算法. In this paper,a new cost funcion is investigated and a new self-recovery equalization algorithm based on this function is proposed for Multi-Lecel QAM modulation. Tthis equalization algorithms based on the new algorithm are proposed. Analysis and computer simulations show that the convergence performanve and symbol error performance of the blind equlation algorithm are better than those of CMA algorithm,and are the same as those of the convertional LMS equalization algorithm. So these new equalization algorithms are very useful for practive use.
出处 《电子学报》 EI CAS CSCD 北大核心 1997年第7期38-42,共5页 Acta Electronica Sinica
关键词 自恢复均衡算法 剩余误差 误码性能 通信理论 Self-recovery equalization algorithm,Residual error,Symbol error performance
  • 相关文献

参考文献1

共引文献7

同被引文献57

  • 1王建新,宋辉.基于星座图的数字调制方式识别[J].通信学报,2004,25(6):166-173. 被引量:56
  • 2潘立军,刘泽民.一种双模式盲均衡算法[J].北京邮电大学学报,2005,28(3):49-51. 被引量:10
  • 3徐金标,葛建华,王新梅.一种新的盲均衡算法[J].通信学报,1995,16(3):78-81. 被引量:26
  • 4Yang Jian,Werner J J,Dumont G A.The Multi-modulus Blind Equalization and Its Generalized Algorithms[J].IEEE Journal on Selected Areas in Communications,2002,20(5):997-1015.
  • 5Benveniste A,Goursat M.Blind Equalizers[J].IEEE Transactions on Communications,1984,32(8):871-883.
  • 6Banovic K,Raheem E A,Khalid A S.Hybrid Methods for Blind Adaptive Equalization:New Results and Comparisons[C]// Proceedings of the 10th Symposium on Computers and Communication.Cartagena,Colombia:IEEE Press,2005:275-280.
  • 7Labat J,Macchi O.Adaptive Decision Feedback Equalization:Can You Skip the Training Period?[J].IEEE Transactions on Communications,1998,46(7):912-930.
  • 8MOBASSERI B G. Digital modulation classification using constellation shape [ J ] .Signal Processing, 2000, 80 (2) : 251-277.
  • 9AHMADI N. Modulation Classification of QAM and PSK from Their Constellation Using Genetic Algorithm and Hi- erarchical Clustering[ C ]. Cairns : ICITA, IEEE, 2008 : 98- 103.
  • 10CHENG Han-wen, HAN Hua, WU Len-an, et al. A 1- Dimension Structure Adaptive Self-organizing Neural Net- work for QAM Signal Classification [ C ]. Perth: ICNC, 1EEE, 2007:53-57.

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部