期刊文献+

基于支持向量机的时态数据预测方法

Forecasting method of temporal data based on support vector regress machine
下载PDF
导出
摘要 支持向量回归机使用由经验误差项和常数项所构成的风险函数,满足结构风险最小原则。在时态数据预测领域,它将成为一种很有前途的预测方法。简要介绍了回归支持向量机的基本理论。基于回归支持向量机模型,建立了一个对时态数据预测的方法,可以对多属性时态数据进行预测,并与其它预测模型(BP神经网络)进行比较。实验结果表明所提出的方法在预测的稳定性和准确性方面都要优于BP神经网络模型。 Support Vector Regress machine(SVR) will be a promising method in temporal data forecasting fields because it uses a risk function consisting of the empirical error and a regularized term which is derived from the structural risk minimization principle.This paper briefly introduces the basic theory of Support Vector Regress (SVR) and applies SVR to create a model, which also can be used for forecasting the multi-attribute temporal data and the temporal data.The result of simulation shows that SVR is superior to BP Neutral Network in the stability and accuracy.
作者 庄彬 孟志青
出处 《计算机工程与应用》 CSCD 北大核心 2007年第19期177-179,184,共4页 Computer Engineering and Applications
关键词 回归支持向量机 时态数据 预测 Support Vector Regress Machine temporal data forecasting
  • 相关文献

参考文献12

二级参考文献16

  • 1David C, Schmittlein, Donald G Morrison, Richard Colombo. Counting your customers:who are they and what will they do next?[J].Management Science, 1987, 33(1): 1-24.
  • 2David C, Schmittlein, Robert A Peterson. Customer Base Analysis: An Customer Value[J]. Harvard Business Review, 1998, 卷(11): 53-67.
  • 3Vapnik V. The Nature of Statistical Learning Theory[M].Springer-Verlag, New York, 1995.
  • 4Nello Cristiartini, John Shawe-Taylor. An Introduction to Support Vector Machines and other Kernel-based learning methods[M]. Cambridge University Press, 2000.
  • 5Steve R Gunn. Support Vector Machines for Classification and Regression Technical Report[R], University of Sounthampton, 1998.
  • 6Gunn S. Support Vector Machines Classification and Regression[R].ISIS Technical Report. Image Speech & Intelligent Systems Group,University of Southampton, 1998.
  • 7Smola Alex J, Scholkopf B. A Tutorial on Support Vector Regression[R].NeuroCOLT2 Technical Report Series NC-TR-98-030, Royal Holloway College, University of London, UK, 1998.
  • 8唐常杰.数据库系列文章之四 Web数据库接口技术[J].工程设计CAD及自动化,1998(4):11-15. 被引量:6
  • 9欧阳为民,蔡庆生.数据库中的时态数据发掘研究[J].计算机科学,1998,25(4):60-63. 被引量:26
  • 10欧阳为民,蔡庆生.在数据库中发现具有时态约束的关联规则[J].软件学报,1999,10(5):527-532. 被引量:54

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部