期刊文献+

MCFC组装压力对隔膜性能的影响 被引量:3

Influence of MCFC stacking pressure on matrix performance
下载PDF
导出
摘要 熔融碳酸盐燃料电池(MCFC)首次启动的隔膜烧结中,组装压力对隔膜电化学性能有一定的影响,最佳值为2.4MPa。隔膜烧结初期的短期内,组装压力在一定的范围内对隔膜电化学性能无影响。在隔膜烧结初期,高温(650℃)下浸满电解质烧结的隔膜中的粉粒发生重排和滑移,隔膜的最大孔径(Dmax)逐步变小;在合适的组装压力下,隔膜的Dmax最大值和滑移速率分别小于和反向高于同温度常压下浸入少量(5%)电解质烧结的隔膜的相应值。组装压力促使隔膜粉粒重排和滑移的发生,但又抑制和减小隔膜内缺陷的发展。经过长时间烧结的隔膜,Dmax小于隔膜寿命极限值7.92μm,满足了电池长期性能稳定的需要。 The stacking pressure influenced the matrix electrochemical performance during the matrix sintering in the first startup of molten carbonate fuel cell(MCFC) ; the optimum value was 2.4 MPa. In the short-term of the initial stage of matrix sintering, the stacking pressure had no influence on the matrix electrochemical performance in some range. In the initial matrix sintering stage, in the matrix impregnated fully with electrolyte at high temperature (650 ℃ ), the rearrangement and slip of powder particles brought out the maximum pore diameter(Dmax) altering to be a smaller one. The Dmax in the matrix and its alteration rate were smaller and opposite higher than those in the sintered matrix impregnated with less (5 %) electrolyte under the ordinary pressure and at same temperature. The stacking pressure facilitated the rearrangement and slip of powder particles, but suppressed and diminished defect development in the matrix. The Dmax in matrix after long time sintering was smaller than that one (7.92μm) limited by lifetime of the matrix, satisfied the need for the long-term stable duration of the cell performance.
出处 《电池》 CAS CSCD 北大核心 2007年第1期6-8,共3页 Battery Bimonthly
关键词 熔融碳酸盐燃料电池 隔膜 组装压力 最大孔径(Dmax) molten carbonate fuel cell(MCFC) matrix stacking pressure maximum pore diameter(Dmax)
  • 相关文献

参考文献4

  • 1林化新,张恩浚,孔连英,曲天锡.熔融碳酸盐燃料电池性能的研究[J].电池,1997,27(3):110-113. 被引量:7
  • 2林化新,衣宝康,李乃朝,曲天锡,张恩浚,孔连英,程英才.用流铸法制备MCFC隔膜的性能研究[J].电化学,1998,4(4):406-413. 被引量:15
  • 3Lin H X,Zhou Li,He C Q,et al.A study on the dependence of the micro-pore configurations on the volatilization and the burn processes of the organic compounds in the matrix of molten carbonate fuel cells[J].Electrochimica Acta,2002,47(9):1 451-1 459.
  • 4Veringa H J.Sintering models and the development of instabilities[J].J Materials Science,1991,26(22):5 985-5 995.

二级参考文献4

共引文献17

同被引文献38

  • 1程健,郭烈锦,许世森,张瑞云,李晨.熔融碳酸盐燃料电池关键部件匹配与性能诊断[J].中国电机工程学报,2012,32(S1):101-107. 被引量:2
  • 2李乃朝,衣宝廉,林化新,孔连英,张恩俊,曲天锡,程英才.熔融碳酸盐燃料电池隔膜用LiAlO_2制备[J].无机材料学报,1997,12(2):211-217. 被引量:19
  • 3U. S. Department of Energy Office of Fossil Energy, Morgantown Energy Technology Center[J]. Fuel Cell Handbook,1994(7).
  • 4James Larminie, Andrew Dicks[J]. Fuel cell system explained, 2000(1).
  • 5戴维明.燃料电池系统[M].北京:化学工业出版社,1996.
  • 6Khomane R B,Agrawal A,Kulkami D.Synthesis and characterization of lithium ahminate nanoparticles[J].Mater Lett,2007,61 (23):4540-4544.
  • 7Kim S D,Hyun S H,Lim T H,et al.Effective fabrication method of rod-shaped γ-LiAlO2 particles for molten carbonate fuel cell matrices[J].J Power Sources,2004,137(1):24-29.
  • 8Hu L F,Tang Z L,Zhang Z T.Hydrothermal synthesis of single crystal mesoporous LiAlO2 nanobelts[J].Mater Lett,2008,62 (12):2039-2042.
  • 9Lin W,Bai X D,Ling Y H,et al.The study of combustion synthesis of fine-particle γ-lithium aluminate[J].J Mater Sci,2003,38(18):3883-3888.
  • 10Chatterjen M,Naskar M K.Novel technique for the synthesis of lithium aluminate (LiAlO2) powders from water-based sols[J].J Mater Sci Lett,2003,22(24):1747-1749.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部