期刊文献+

基因芯片数据分析方法研究进展 被引量:5

The Methods of Classification and Analysis of the Microarray Data
下载PDF
导出
摘要 基因芯片技术的出现改变了生物医学研究的前景,其产生的海量数据是限制其发展的瓶颈问题。为提取其中所隐含的有价值的信息,在基因芯片数据分析的复杂计算工具和方法方面近年来有很多尝试。本文对近5年来基因芯片表达数据的分类分析方法进行综述,既分类比较了以聚类分析为基础的分类方法,也吸收了当前应用数据挖掘、信息融合等系统生物学思路的研究技术,并对数据的分析结果进行评价。 DNA microarray technologies have changed the foreground of biological medicine, but plentiful data is the key problem in the application of the microarrays. In the recent years many algorithm tools and methods have been emerging in multitude in this era of post-gene which extract the valuable information domanted in the results of microarrays. In this paper, the approach of these methods in the recent 5 years was generalized, the cluster analysis, the data mining and the information fusion which involved the principle of systematic biology were compared, including the evaluation of the analystic result.
出处 《生物技术通讯》 CAS 2007年第1期144-148,共5页 Letters in Biotechnology
基金 国家自然科学基金项目(90209015) 国家高技术研究发展计划项目(2003AA2Z2022)
关键词 基因芯片 数据 分类 聚类分析 数据挖掘 信息融合 gene chip data classification cluster data mining information nffusion
  • 相关文献

参考文献44

  • 1Schena M,Shalon D,Davis RW,et al.Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J].Science,1995,270:467
  • 2Reimers M.Statistical analysis of microarray data[J].Addict Biol,2005,10:23
  • 3Julia H,Joshua K,Douglas BK.Computational cluster validation in post-genomic data analysis[J].Bioinformatics,2005,21(15):3201
  • 4Khatri P,Drǎghici S.Ontological analysis of gene expression data:current tools,limitions,and open problems[J].Bioinformatics,2005,21(18):3587
  • 5Kooperberg C,Fazzio TG,Delrow JJ,et al.Improved background correction for spotted cDNA microarrays[J].J Comput Biol,2002,9:55
  • 6Uchiyama I.Hierarchical clustering algorithm for comprehensive orthologous-domain classification in multiple genomes[J].Nucl Acids Res,2006,(34)2:647
  • 7Dudoit S,Fridlyand J,Speed TP.Comparison of discrimination methods for the classification of tumors using gene expression data[J].J Am Stats Assoc,2002,97:77
  • 8Dougherty ER,Barrera J,Brun M,et al.Inference from clustering with application to gene-expression microarrays[J].J Comput Biol,2002,9(1):418
  • 9Tamayo JP,Slonim D,Mesirov J,et al.Interpreting pattems of gene expression with self-organizing maps:methods and application tohematopoietie differentiation[J].Proc Natl Acad Sci USA,1999,96:2907
  • 10Covell DG,Wallqvist A,Rabow AA,et al.Molecular classification of cancer:unsupervised self-organizing map analysis of gene expression microarray data[J].Mol Cancer Ther,2003,2:317

同被引文献70

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部