期刊文献+

一种改进的模糊核聚类算法 被引量:1

An Improved Fuzzy Kernel Clustering Algorithm
下载PDF
导出
摘要 文章提出了将HCM,FCM和核方法结合在一起的,一种改进模糊核聚类算法。该算法的思想是将样本数据映射到特征空间,然后在特征空间内计算类中心、隶属度以及距离表达式,再在特征空间内进行模糊聚类,并且针对个别样本(即隶属度比较接近的样本)加入了截集因子确定样本的归属,确保聚类的效果。实验结果表明,与传统的模糊聚类算法相比,改进的模糊核聚类算法在多种数据结构条件下可以有效地进行聚类,总体性能优于HCM,FCM和FKCM。 This paper presents a Sectional Set FKCM,which is a generalization of the conventional Sectional Set FCM and HCM.The main idea of the algorithm is how to map sample data to feature space and compute the center and degree of membership for all categories.So the fuzzy clustering can be processed in the feature space by adding cut factor(to some sample(process close degree of membership)to conform their adscription and ensure a good effect of clustering.The results gained by experiments using actual data show that the Sectional Set fuzzy kernel C-means clustering algorithm can effectively cluster for data with diversiform structures compared with the Sectional Set fuzzy C-means clustering algorithm.The algorithm possesses better performance than classical clustering algorithm(HCM,FCM,FKCM).
作者 赵毓高 彭宏
出处 《西华大学学报(自然科学版)》 CAS 2007年第3期48-50,69,共4页 Journal of Xihua University:Natural Science Edition
关键词 核方法 模糊C-均值 核聚类算法 特征空间 kernel methods fuzzy C-means kernel clustering algorithm feature space
  • 相关文献

参考文献7

  • 1[1]Krishnapuran R,Keller J M.A possibilistic-means Algonthm[J].IEEE Trans Fuzzy Syst,1993(2):100-112.
  • 2[3]Dave R N.Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Bounda-ries[J].Pattern Recognition,1992,25(7):639-641.
  • 3[4]Bezdek J C.Pattem Recognition with Fuzzy Ob-jective Function Algodthms[M].New York:Plenum Press,1981.
  • 4张莉,周伟达,焦李成.核聚类算法[J].计算机学报,2002,25(6):587-590. 被引量:195
  • 5伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 6[8]Bezdek J C.Convergence Theory for Fuzzy C-Means:Counterexamples and Repaires[J].IEEE Trans on SMC,1987,17(4):873-877.
  • 7[9]Bezdek J C,Keller J M,Krishnapuram R,et al.Will the Real IRIS Data Please Stand up[J].IEEE Trans on Fuzzy System,1999,7(3):368-369.

二级参考文献12

  • 1Dave R N. Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Boundaries[J]. Pattern Recognition, 1992, 25(7): 639-641.
  • 2Krishnapuram R, Frigui H, Nasraui O. The Fuzzy C Quadric Shell Clustering Algorithm and the Detection of Second-degree[J]. Pattern Recognition Letters, 1993, 14(7): 545-552.
  • 3Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks, 2002, 13(3): 780-784.
  • 4Burges C J C. Geometry and Invariance in Kernel Based Methods[A]. Advance in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999. 89-116.
  • 5Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017.
  • 6Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
  • 7Bezdek J C. Convergence Theory for Fuzzy C-Means: Counterexamples and Repaires[J]. IEEE Trans on SMC, 1987, 17(4): 873-877.
  • 8Bezdek J C, Keller J M, Krishnapuram R, et al. Will the Real IRIS Data Please Stand Up?[J]. IEEE Trans on Fuzzy System, 1999, 7(3): 368-369.
  • 9Chernoff D F. The Use of Faces to Represent Points in k-dimensional Space Graphically[J]. Journal of American Statistic Association, 1999, 58(342): 361-368.
  • 10高新波,谢维信.模糊聚类理论发展及应用的研究进展[J].科学通报,1999,44(21):2241-2251. 被引量:100

共引文献240

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部