期刊文献+

基于模糊聚类算法的神经网络集成 被引量:4

Neural Networks Ensemble Based on Fuzzy Clustering Algorithm
下载PDF
导出
摘要 基于模糊聚类思想,提出了一种神经网络集成方法。利用隶属度函数,构造了一个分布函数,根据分布函数对训练数据进行抽样,用所抽得的数据作为个体神经网络的训练样本,多个个体神经网络构成神经网络集成,集成的输出采用相对多数投票法。理论分析和实验结果表明,该方法对模式分类能取得较好的效果。 Based on fuzzy clustering, a method for neural network ensemble is proposed. Using membership function, a distributed function is constructed and based on it, data are sampled from training samples. Then these data are used as training set of individual neural networks, many individual neural networks constitute neural network ensemble and the output of the ensemble uses majority voting method. Theoretical analysis and experimental results show that this neural network ensemble method is efficient for pattern classification.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第5期180-181,184,共3页 Computer Engineering
基金 江苏省高校自然科学基金资助项目(05KJB520102) 扬州大学自然科学基金资助项目(KK0413160)
关键词 模糊聚类 神经网络集成 模式分类 Fuzzy clustering Neural networks ensemble Pattern classification
  • 相关文献

参考文献11

  • 1Schapire R E.The Strength of Weak Learn Ability[J].Machine Learning,1990,5(2):197-227.
  • 2Jiang Yuan,Zhou Zhihua,Xie qi,et al.Application of Neural Network Ensemble to The Recognition of Lung Cancer Cells[J].Journal of Nanjing University,2001,37(5):529-534.
  • 3Sharkey A J C.On Combining Artificial Neural Networks[J].Connection Science,1996,8(34):299-313.
  • 4Krogh A,Vedelsby J.Neural Networks Ensembles,Cross Validation and Active Learning[M].Advances in Neural Information Processing Systems,1995:231-238.
  • 5Breiman L.Bagging Predictors[J].Machine Learning,1996,24(2):123-140.
  • 6Freund Y,Schapire R.Experimants with A New Boosting Algorithm[C]//Proceedings of the 13th International Conference on Machine Learning.1996:148-156.
  • 7Bezdek J C.Pattern Recognition with Fuzzy Objective Algorithm[M].New York:Plenum Press.1981:309-321.
  • 8Pal N R,Bezdek J C.On Cluster Validity for the Fuzzy C-mean Model[J].IEEE Trans.on Fuzzy Systems,1995,3(3):370-379.
  • 9Sollich P.Krogh A.Learning with Ensembles:HOW Overfitting Can be Useful[M]//Advances in Neural Information Processing Systems 8.Cambridge.MA:MIT Press.1996:190-196.
  • 10Blake C,Keogh E,Merz C J.UCI Repository of Machine Learning Databases[EB/OL].1998.http://www.ics.uci.edu/-mlearn/MLRRepository.html.

同被引文献43

  • 1苏晓影,贺跃,郑建军.一种基于神经网络集成的决策树构造方法[J].计算机仿真,2006,23(11):95-98. 被引量:3
  • 2王尔馥,孟维晓,史兢.基于遗传算法RBF网络的波束形成[J].哈尔滨工业大学学报,2007,39(1):89-92. 被引量:3
  • 3邓聚龙.灰色系统基本方法[M].武汉:华中科技大学出版社,2004.
  • 4潘大夫,汪渤.一种基于外部轮廓的数字验证码识别方法[J].微计算机信息,2007(25):256-258. 被引量:23
  • 5C J C Burges. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998,2 (2) :121 -176.
  • 6H Kim, etal. Constructing support vector machine ensemble [ J ]. Pattern Recognition, 2003,36 ( 12 ) :2757 - 22767.
  • 7R E Schapire. The strength of weak learn ability[ J]. Machine Learning, 1990,5(2) : 197 -227.
  • 8L Breiman. Bagging predictors. Machine Learning [ J ]. 1996,24 (2) :123 - 140.
  • 9S Y Mei, Y Liu, G F Wu. Rough reducts based SVM ensemble [ C]. Gordon Research Conference. New Hampshire, 2005:571 - 574.
  • 10林健,朱帮助.基于粗集支持向量机的区域经济走势预测方法[J].计算机仿,2008,25(10):272-275.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部