期刊文献+

对最小置信度门限的置疑 被引量:5

Doubts about Min Confidence Threshold
下载PDF
导出
摘要 在关联规则挖掘中,通常使用最小支持度和最小置信度两个门限来衡量一条规则是不是一个强规则。本文对最小置信度这个参数的实际意义,从理论和实践上进行了分析研究和探讨,发现使用最小置信度进行限制不仅所挖掘出的规则质量较低,还有可能遗漏一些具有重要价值的规则,进一步提出提升率比置信度更能反映实际情况,在关联规则挖掘中改用最小支持度和最小提升率作为衡量准则,其结论更加准确,意义也更明确。 The two thresholds: min support and min confidence are often used to evaluate if a rule is a strong rule or not in association rules mining. The present paper analyzes and explores the practical significance of min confidence both theoretically and practically. It finds that not only the quality of the mined rules is comparatively low but also some important rules are probably missed out if rain confidence is used to restrict. Different from previous research, this paper proposes that upgrade rate can reflect the actuality more accurately than rain confidence and the result will be more accurate and clearer if min support and min upgrade are taken as the weighing rule in association rules mining.
出处 《计算机科学》 CSCD 北大核心 2007年第6期216-218,共3页 Computer Science
基金 国家自然科学基金(60473115)。
关键词 数据挖掘 关联规则 兴趣度 置信度 提升率 Data mining, Association rules, Interest, Confidence, Upgrade rate
  • 相关文献

参考文献6

  • 1HAN Jiawei,Kamber M.Data Mining Concepts and Techniques[M].San Francisco:Morgan Kaufmann Publishers,2001
  • 2Dunham MH.数据挖掘教程[M].郭崇慧,田凤占,靳晓明译.北京:清华大学出版社,2005.
  • 3Hastie T,Tibshirani R,Friedman J,范明,柴玉梅译.统计学习基础-数据挖掘、推理与预测[M].北京:电子工业出版社,2004..
  • 4Ahmed K M,El-Makky N M,Taha Y.A note on “Beyond market basket:Generalizing association rules to correlations.”[C].SIGKDD Explorations,2000 (1):46 ~ 48
  • 5Brin S,Motwani R,Silverstein C.Beyond market basket:Generalizing association rules to correlations[C].In:Proc.1997 ACMSIGMOD Int.Conf.Management of Data,Tucson,AZ,1997.265~276
  • 6罗可,郗东妹.采掘有效的关联规则[J].小型微型计算机系统,2005,26(8):1374-1379. 被引量:12

二级参考文献8

  • 1Agrawal R et al. Mining association rules between sets of items in large databases[C]. In: Proceedings of ACM SIGMOD Conference on Management of Data, Washington DC. 1993, 207-216.
  • 2Agrawal R, Srikant R. Fast algorithms for mining association rules[C]. In: Proceedings of the 20th International Conference on Very Large Databases, Santiago, Chile, 1994, 487-499.
  • 3Agrawal R et al. Fast discovery of association rules[M]. In:Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press,Menlo Park, California ,1996, 307-328.
  • 4Brin S. Motwani R, Silverstein C. Beyond market basket: Generalizing association rules to correlations[C]. In: Proc. 1997ACM-SIC-MOD Int. Conf. Management of Data, Tucson, AZ,1997, 265-276.
  • 5Srikant R, Agrawal R. Mining generalized association rules[C]. In: Proceedings of the 21th International Conference on Very Large Data Bases, Zurich, Switzerland ,September 1995.407-419.
  • 6Srikant I~., Agrawal R. Mining quantitative association rules[C]. In: Proceedings of the ACM SIGMOD. Montreal,Canada,1996,1-12.
  • 7Savasere A, Omiecinski E, Navathe S. Mining for strong negative association in a large database of customer transactions[C].In: Proceedings of the International Conference on Data Engineering. Orlando, Florida. 1998. 494-502.
  • 8Ahmed K M, E1-Makky N M, Taha Y. A note on “Beyond market basket: Generalizing association rules to correlations[C]. ” SIGKDD Explorations 1,2000,46-48.

共引文献42

同被引文献56

  • 1董祥军,王淑静,宋瀚涛,陆玉昌.负关联规则的研究[J].北京理工大学学报,2004,24(11):978-981. 被引量:33
  • 2董祥军,王淑静,宋瀚涛.基于两级支持度的正、负关联规则挖掘[J].计算机工程,2005,31(10):16-18. 被引量:19
  • 3赵悦,穆志纯.基于委员会投票选择方法的主动学习的研究[J].太原理工大学学报,2006,37(4):469-472. 被引量:7
  • 4刘以安,羊斌.关联规则挖掘中对Apriori算法的一种改进研究[J].计算机应用,2007,27(2):418-420. 被引量:53
  • 5马占欣,陆玉昌.负关联规则挖掘中的频繁项集爆炸问题[J].清华大学学报(自然科学版),2007,47(7):1212-1215. 被引量:10
  • 6Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[ C]//Proc. of the ACM SIGMOD Int. Conf. on Management of data (ACM SIGMOD '93). Washington, USA, 1993(3) :207 -216.
  • 7Agrawal R, Srikant R. Fast algorithms for mining association rules [ C]//Proc. of the 20th Int. Conf. on Very Large Databases(VLDB' 94). Santiago, Chile, 1994 : 487 - 499.
  • 8Wu Xindong, Zhang Chengqi, Zhang Shichao. Mining both positive and negative association rules[ C]//Proceedings of the 19th International Conference on Machine Learning (ICML-2002). San Francisco: Morgan Kaufmann Publishers, 2002: 658 - 665.
  • 9Brin S, Motwani R, Silverstein C. Beyond market: generalizing association rules to correlations[ C]//Processing of the ACM SIGMOD Conference 1997. New York: ACM Press, 1997 : 265 - 276.
  • 10Savasere A, Omiecinski E, Navathe S. Mining for strong negative associations in a large database of customer transaction[C]//Proceedings of the IEEE 14th Int. Conference on Data Engineering. Los Alamitos: IEEE - CS, 1998: 494 - 502.

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部