期刊文献+

近似约简算法研究 被引量:1

The Study of Approximately Reduction Arithmetic
下载PDF
导出
摘要 信息系统属性的约简可以提高知识发现、机器学习等的精度和效率。本文提出了一种近似约简算法,该算法可使信息系统在基本保持原风格的情况下尽可能少地保留属性,为后期的系统处理节约了大量的处理时间。该算法的时间复杂度没有提高,约简后的属性大大减少。虽然原信息系统有一定的损失,但在一定的显著水平下是可以接受的。最后对一个有9个属性的信息系统进行了约简和近似约简的对比分析。 The attributes reduction of information system can enhance accuracy and efficiency of knowledge discovery, machine learning, etc. This paper proposes a approximately reduction arithmetic, this arithmetic can retain the minimal attributes in the basic form of the information systems, as much as possible to reduce attributes, that can save the time of the system's upper disposal. The arithmetic time order of the complexity has not enhanced, but the reduced attributes greatly reduced. The original information system has the certain loss, but this is may accept under the certain remarkable level. And a system having nine attributes been carried on the reduction and the approximately reduction of contrast analysis.
出处 《计算机科学》 CSCD 北大核心 2007年第7期165-167,共3页 Computer Science
基金 国家自然科学基金资助项目(批准号:60573056) 浙江省自然科学基金资助项目(批准号:Y105090)
关键词 属性约简策略 区分矩阵 近似约简 Attributes reduction strategy, Discernibility matrix, Approximately reduction
  • 相关文献

参考文献8

  • 1Pawlak Z. Rough Sets. International Journal of Information and Computer Sciences, 1982, 11:341-356
  • 2Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Boston, London, Dordrecht, 1991
  • 3Pawlak Z, et al. Rough Sets. Communications of the ACM, 1995, 38(11):89-95
  • 4Blum A, Langley P. Selection of Relevant Feature and Examples in Machine Learning. Artificial Intelligence, 1997,72:245-271
  • 5Almuallim H, Dietterich T. Learning Boolean Concepts in the Presence of Many Irrelevant Features. Artificial Intelligence, 1994, 69(1-2) :279-305
  • 6Kira K, Rendell L. The Feature Selection Problem: Traditional Methods and A New Algorithm. In: Proceedings of the Tenth National Conference on Artificial Intelligence, Menlo Park, AAAI Press/The MIT Press, 1992. 129-134
  • 7Modrzejewski M. Feature Selection Using Rough Sets Theory. In: Proceedings of the European Conference on Machine Learning, Vienna, 1993. 213-226
  • 8Skowron A. The Discernibility Matrices and Functions in Information Systems, Intelligent Decision Support-Handbook of Applications and Advances of Rough Sets Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 1992. 331-363

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部