摘要
对三阶非线性KdV方程给出了一组非对称的差分公式,用这些差分公式与显、隐差分公式组合,构造了一类具有本性并行的交替分段显-隐格式.证明了格式的线性绝对稳定性.对1个孤立波解、2个孤立波解的情况分别进行了数值试验.数值结果显示,交替分段显-隐格式稳定,有较高的精确度.
A group of asymmetric difference schemes to approach the Korteweg-de Vries (KdV) equation was given here. Using the schemes and the full explicit difference scheme and the full implicit dif- ference scheme, the alternating difference scheme for solving the KdV equation was constructed. The scheme is linear unconditionally stable by analysis of linearization procedure, and is used directly on the parallel computer. The numerical experiments show that the method has high accuracy.
出处
《应用数学和力学》
CSCD
北大核心
2007年第7期869-876,共8页
Applied Mathematics and Mechanics
基金
国家自然科学基金资助项目(10671113)
山东省自然科学基金资助项目(Y2003A04)