期刊文献+

三阶非线性KdV方程的交替分段显-隐差分格式 被引量:15

Alternating Segment Explicit-Implicit Scheme for Nonlinear Third-Order KdV Equation
下载PDF
导出
摘要 对三阶非线性KdV方程给出了一组非对称的差分公式,用这些差分公式与显、隐差分公式组合,构造了一类具有本性并行的交替分段显-隐格式.证明了格式的线性绝对稳定性.对1个孤立波解、2个孤立波解的情况分别进行了数值试验.数值结果显示,交替分段显-隐格式稳定,有较高的精确度. A group of asymmetric difference schemes to approach the Korteweg-de Vries (KdV) equation was given here. Using the schemes and the full explicit difference scheme and the full implicit dif- ference scheme, the alternating difference scheme for solving the KdV equation was constructed. The scheme is linear unconditionally stable by analysis of linearization procedure, and is used directly on the parallel computer. The numerical experiments show that the method has high accuracy.
出处 《应用数学和力学》 CSCD 北大核心 2007年第7期869-876,共8页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10671113) 山东省自然科学基金资助项目(Y2003A04)
关键词 Koaeweg-de Vfies方程 本性并行 交替分段显-隐差分格式 线性绝对稳定 KdV equation intrinsic pallelism alternating sentient explicit-implicit difference scheme linearunconditionally stable
  • 相关文献

参考文献13

  • 1Zabusky N J,Kruskal M D. Interaction of "solitions" in a collisionless plasma and the recurrence of initial states[J].Physical Rev Lett, 1965,15(6) :240-243.
  • 2Osborne A R. Nonlinear fourier analysis for the infinite-interval Korteweg-de Vries equation Ⅰ :An algorithm for direct scattering transform[J]. J Comput Phys, 1991,94(2) :284-313.
  • 3彭点云.KdV方程的多点格式方法[J].数值计算与计算机应用,1998,19(4):241-251. 被引量:7
  • 4Djidjeli K, Price W G, Twizell E H, et al. Numerical methods for the solution of the third-and fifthorder dispersive Korteweg-de Vries equations[ J]. J Comput Appl Math, 1995,58(3):307-336.
  • 5FENG Bao-feng, Taketomo Mitsui. A finite difference method for the Korteweg-de Vries and the Kadomtsev-Petviashvili equations[ J]. J Comput Appl Math, 1998,90( 1 ):95-116.
  • 6Evans D J, Abdullah A R B. Group explicit methods for parabolic equations[ J]. Intern J Comput Math, 1983,14( 1 ) : 73-105.
  • 7ZHANG Bao-lin, LI Wen-zhi. On alternating segment Crank-Nicolson scheme[J]. Parallel Computing, 1994,20(5) :897-902.
  • 8YUAN Guang-wei, SHEN Long-jun, ZHOU Yu-lin. Unconditional stability of alternating difference schemes with intrinsic parallelism for two-dimensional parabolic systems[J].Inc Numer Methods Partial Di ffential Eq , 1999,15(6) :25-636.
  • 9ZHU Shao-hong,Zhao J. The alternating segment explicit-implicit method for the dispersive equation [J]. Applied Mathematics Letters ,2001,14(6) :657-662.
  • 10朱少红,袁光伟.色散方程的一类本性并行的差分格式[J].应用数学学报,2003,26(3):495-503. 被引量:10

二级参考文献12

  • 1Zhou Yulin and Yuan GuangweiLaboratory of Computational PhysicsCentre for Nonlinear Studies(Institute of Applied Physics and Computational MathematicsP. O. Box 8009, Boiling, 100088, China).Stability of Difference Schemes with Intrinsic Parallelism for Quasilinear Parabolic Systems[J].Wuhan University Journal of Natural Sciences,1996,1(Z1):579-592. 被引量:10
  • 2刘德贵,FORTRAN算法汇编,1998年,218页
  • 3彭点云,J Comput,1995年,120卷,253页
  • 4Chu C K,Adv Appl Mech,1990年,27卷
  • 5Chou R L,Phys Fluids A,1990年,2卷,9页
  • 6蒋伯诚,计算物理中的谱方法—FFT及其应用,1988年
  • 7郭柏灵,孤立子,1987年
  • 8Ma Heping,J Comput Phys,1986年,65卷,120页
  • 9Chu C K,Commun Pure Appl Math,1983年,36卷,495页
  • 10郭本瑜,计算数学,1981年,3卷,1页

共引文献15

同被引文献49

引证文献15

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部