期刊文献+

LiFePO_4/C复合材料的制备和性能研究 被引量:1

Preparation and properties of LiFePO_4/C composites
下载PDF
导出
摘要 采用溶胶凝胶法对原料进行了混合,在氮气保护下利用固相反应烧成了LiFePO4/C复合材料.XRD衍射分析表明,烧成温度和碳源引入量对LiFePO4/C的结晶度有较大的影响,在650~700℃范围内烧成的LiFePO4/C结晶完整;当碳源引入量超过20%时,LiFePO4/C衍射峰强度下降.SEM电镜观察到,烧成的LiFePO4/C晶粒细小,大小均匀,晶粒尺寸为100nm左右.以烧成的LiFePO4/C复合材料作为正极材料进行充放电测试,发现碳源对首次放电容量有较大的影响,分别以乙炔黑、蔗糖和葡萄糖作为碳源时,0.1C倍率下首次放电容量分别为120,135,162mA·h/g.对以葡萄糖为碳源烧成的LiFePO4/C复合材料进行放电倍率测试,研究结果表明,该复合材料具有优异的大电流充放电性能.在1C和3C高倍率下首次放电容量为0.1C倍率下放电容量的90%和80%. LiFePO4/C was synthesized using solid-state reaction under N2 atmosphere where the reaction precursor was prepared by sol-gel method. XRD analysis proved that the sintering temperature and carbon source play an important role in crystalline of LiFePO4/C. In range of 650-700 ℃, LiFePO4 was crystallizedwell. When the content of carbon source was beyond 20 %, the diffraction intensity was weakened. The particles of LiFePO4/C were homogeneous, about 100 nm sizes. Charge-discharge test was made with LiFePO4/C as cathode material. It was found that carbon sources had close relation to composite's initial discharge capacity. At 0.1 C rate, the initial discharge capacity was corresponding 120,135, 162 mA · h/g with acetylene black, sucrose, and glucose as carbon sources. The LiFePO4/ C with glucose as carbon source exhibited large current charge-discharge properties. At 1 C and 3 C rate, the initial discharge capacity was 90%, 80% in 0.1 C, respectively.
出处 《长沙理工大学学报(自然科学版)》 CAS 2007年第2期84-88,共5页 Journal of Changsha University of Science and Technology:Natural Science
基金 湖南省教育厅青年基金科研资助项目(06B002) 长沙理工大学青年基金科研资助项目(1004085)
关键词 磷酸铁锂 锂离子电池 正极材料 复合材料 LiFePO4/C lithium ion battery composite cathode material
  • 相关文献

参考文献12

  • 1[1]Masaya T,Tobishima S,Koji T,et al.Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries[J].J Power Sources,2001,(97~98):508-511.
  • 2[2]Sylvain F,Frederic L C,Carole B,et al.Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties[J].J Power Sources,2003,(119~ 121):252-257.
  • 3[3]Kathryn S,Joongpyo S,Venkat S,et al.Comparison of LiFePO4 from different Sources[J].Electrochem Soc,2005,(152):664-670.
  • 4[4]Osorio-Guillen J M,Holma B,Ahuja R,et al.A theoretical study of olivine LiMPO4 cathodes[J].Solid State Ionics,2004,(167):221-227.
  • 5[5]Bewlay S L,Konstantinov K,Wang G X,et al.Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source[J].Materials Letters,2004,(58):1788-1791.
  • 6[6]Daniela Z,Maria C,Silvera S,et al.Factor affecting rate performance of undoped LiFePO4[J].Electrochimica Acta,2004,(49):4259-4271.
  • 7[7]Arnold G,Garche J,Hemmer R.Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique[J].Power Sources,2003,(119-121):247-251.
  • 8[8]Sung yoon chung,Jason T Bloking,Yet ming chiang.Electronically conductive phospho-olivines as lithium storage electrodes[J].Nature Materials,2002,(1):123-128.
  • 9[9]Deyu Wang,Hong Li,Siqi Shi,et al.Improving the rate performance of LiFePO4 by Fe-site doping[J].Electrochimica Acta,2005,(50):2955-2958.
  • 10[10]Jingsi Y,Jun J X.Nonaqueous sol-gel synthesis of high-performance LiFePO4[J].Electrochemical and Solid-State Letters,2004,(7):515-518.

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部