期刊文献+

Vertex Distinguishing Equitable Total Chromatic Number of Join Graph 被引量:5

Vertex Distinguishing Equitable Total Chromatic Number of Join Graph
原文传递
导出
摘要 A vertex distinguishing equitable total coloring of graph G is a proper total coloring of graph G such that any two distinct vertices' coloring sets are not identical and the difference of the elements colored by any two colors is not more than 1. In this paper we shall give vertex distinguishing equitable total chromatic number of join graphs Pn VPn, Cn VCn and prove that they satisfy conjecture 3, namely, the chromatic numbers of vertex distinguishing total and vertex distinguishing equitable total are the same for join graphs Pn V Pn and Cn ∨ Cn. A vertex distinguishing equitable total coloring of graph G is a proper total coloring of graph G such that any two distinct vertices' coloring sets are not identical and the difference of the elements colored by any two colors is not more than 1. In this paper we shall give vertex distinguishing equitable total chromatic number of join graphs Pn VPn, Cn VCn and prove that they satisfy conjecture 3, namely, the chromatic numbers of vertex distinguishing total and vertex distinguishing equitable total are the same for join graphs Pn V Pn and Cn ∨ Cn.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2007年第3期433-438,共6页 应用数学学报(英文版)
基金 the Xianyang Normal University Foundation for Basic Research(No.06XSYK266) Com~2 MaCKOSEP(R11-1999-054)
关键词 PATH CYCLE join graph vertex distinguishing equitable total chromatic number Path, cycle, join graph, vertex distinguishing equitable total chromatic number
  • 相关文献

参考文献13

  • 1Bazgan, C., Harkat-Benhamdine, A., Li, H., Wozniak, M. On the vertex-distinguishing proper edge-coloring of graphs. J. Combin. Theory (series B), 75:288-301 (1999)
  • 2Bondy, J.A., Marty, U.S.R. Graph theory with applications. The Macmillan Press Ltd, New York, 1976
  • 3Burris, A.C., Schelp, R.H. Vertex-distinguishing proper edge-colourings. J. Graph Theory, 26(2): 70-82 (1997)
  • 4Burris, A.C. Vertex-distinguishing edge-colorings, Ph.D. Dissertation. Memphis State University, August 1993
  • 5Cerny, J., Hornak, M., Sotak, R. Observability of a graph. Math. Slovaca, 46:21 31 (1996)
  • 6Harary, F., Maybee, J.S.(Eds.) Graphs and Applications. Wiley-Interscience, New York, 1985
  • 7Hornak, M., Sotak, R. Observability of complete multipartite graphs with equipotent parts. Ars Combin., 41:289-301 (1995)
  • 8Hornak, M., Sotak, R. Asymptotic behaviour of the observability of Qn, Discrete Math. 176 (1997) 139-148
  • 9Li, J.W., Zhang, Z.F. etc. A note on adjacent strong edge coloring of k(n,m). Acta Mathematicae Applicatae Sinica, 22(2): 283-286 (2006)
  • 10Wang, Z.W., Zhang, Z.F., Yah, L.H. Vertex-distinguishing edge chromatic number of Pm V Pn. Journal of Lanzhou University, 41(6): 101-102 (2005)

同被引文献14

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部