期刊文献+

基于遗传优化的支持向量机小时负荷滚动预测 被引量:32

Support Vector Machine Models Optimized by Genetic Algorithm for Hourly Load Rolling Forecasting
下载PDF
导出
摘要 利用支持向量机(SVM)和遗传算法(GA)建立24个不同的混合模型来对夏季24点负荷进行滚动预测。通过追加最新的负荷和天气信息来更新混合模型的输入,滚动预测下一小时负荷。利用SVM建立预测模型,利用GA自动选择SVM模型的参数。经过GA优化后的最终SVM模型用于滚动预测下一小时的负荷。研究实例表明,GA简化了SVM参数选择,优化了SVM模型;滚动预测效果要明显好于常规预测方法。 This paper presents hybrid models of support vector machines (SVM) and genetic algorithm (GA) to forecast summer 24 hourly loads. These models were applied to rollingly forecast the loads respectively with their inputs updated by newly obtained information of the hourly. SVM were applied to build a series rolling forecasting models. Parameters in the SVM models were automatically selected by GA to simplify the complex modeling. These optimized models were then used to forecast the rest unknown hourly loads of the day. A studied case shows that the forecasting errors of the dynamical models is significantly lower than that of the compared methods.
出处 《电工技术学报》 EI CSCD 北大核心 2007年第6期148-153,共6页 Transactions of China Electrotechnical Society
基金 国家自然科学基金(50077007) 高等学校博士点专项基金(20040079008)资助项目。
关键词 支持向量机 小时负荷预测 遗传算法 滚动预测 Support vector machines, hourly load forecasting, genetic algorithm, rolling forecasting
  • 相关文献

参考文献7

二级参考文献119

共引文献654

同被引文献314

引证文献32

二级引证文献509

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部