期刊文献+

基于蚁群算法与神经网络的机械故障诊断方法 被引量:17

Fault Diagnosis Based on Integrated Ant Colony Algorithm and Neural Networks
下载PDF
导出
摘要 为解决柴油机故障诊断这一复杂问题,提出了一种基于智能互补融合的智能诊断方法。采用蚁群算法(ACA)对反映运行工况的特征参数进行属性约简,剔除不必要的属性。根据约简结果,建立了基于径向基函数(RBF)神经网络的故障诊断系统。网络的训练对比结果表明,基于蚁群算法的约简处理简化了输入神经网络的数据维数,提高了网络的训练效率和故障分类准确性。 A new AI method, the hybrid of ant colony algorithm (ACA) and neural networks, was put forward to solve the fault diagnosis of diesel engine. The ant colony algorithm is used to simplify attribute parameter reflecting operating conditions of diesel engine and in which unnecessary attributes are eliminated. According to the reduction result, the fault diagnosis system based on RBF neural networks was produced. Through the comparison of fault classification effect, it is shown that the new method reduces the dimension of input to neural network, raises the training efficiency and the fault classification accuracy.
作者 张扬 曲延滨
出处 《机床与液压》 北大核心 2007年第7期241-244,共4页 Machine Tool & Hydraulics
基金 山东省科技攻关项目(项目编号:2006129)
关键词 故障诊断 蚁群算法 RBF Fault diagnosis ACA RBF
  • 相关文献

参考文献8

  • 1A.Colorni,M.Dorigo,V.Maniezzo.Distributed optimization by ant colonies[C].Proceedings of the First European Conference on Artificial Life,ECAL'91.Elsevier,Paris,France,1992:34-142.
  • 2Johann Dreo,Patrick Siarry.A new ant colony algorithm using the heterarchical concept aimed at optimization of multi-minima continuous functions[J].ANTS 2002 LNCS.Berlin,Heidelberg:2002,2463:216-221.
  • 3M.Dorigo,V.Maniezzo,A.Colorni.Ant system:optimization by a colony of cooperating agents[J].IEEE Trans.,1996,26 (1):29-41.
  • 4J.Walter,Gutjahr.A Graph-based Ant System and its Convergence[J].Future Generation Computer System,2000,16:837-888.
  • 5James M,Marcus R.Anti-pheromone as a tool for better exploration of search space[C].Proc of 3rd Int.Workshop on Ant Algorithms.Brussels,2002:100-110.
  • 6Gambardella L M,Dorigo M.Solving symmetric and asymmetric TSPs by ant colonies[C].Proc of the IEEE Conf on Evolutionary Computation.Nagoya,1996:622-627.
  • 7Sorsa Timo,Koivo Heikki N.Application of artificial neural networks in process fault diagnosis[J].Automatica,1993,29 (4):843-849.
  • 8Shen Lixiang,Tay Francis E.H.Tay,et al.Fault diagnosis using rough sets theory[J].Computers in Industry,2000,43(1):61-72.

同被引文献171

引证文献17

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部