摘要
设N是复可分Hilbert空间H上的一个非平凡套且τ(N)是相应的套代数.研究了套代数τ(N)上的可乘导子以及近似可乘导子,利用投影以及分块理论证明了套代数τ(N)上的每一个可乘导子都是自动可加的.同时,证明了当H是无限维时,套代数τ(N)上的每一个近似可乘导子都是内导子.
Let N be a non-trivial nest on a complex separable Hilbert space H and τ(N) be the associated nest algebra. The multiplieative derivation and approximately multiplieative derivation of τ(N) are considered. Using the projector and the theory of partisioning, the additivity of multiplieative derivation of τ(N) is proved. And when H is an infinite dimensional Hilbert space, every approximately multiplieative derivation of τ(N) is an inner derivation.
出处
《纺织高校基础科学学报》
CAS
2007年第2期153-155,共3页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(10571114)
陕西省自然推研究计划资助项目(2004A17)
关键词
可乘导子
近似可乘导子
套代数
multiplieative derivation
approximately multiplieative derivation
nest algebra