期刊文献+

核最近邻凸包分类算法 被引量:6

Kernel Nearest Neighbor Convex Hull Classification Algorithm
下载PDF
导出
摘要 为了增强最近邻凸包分类器的非线性分类能力,提出了基于核函数方法的最近邻凸包分类算法。该算法首先利用核函数方法将输入空间映射到高维特征空间,然后在高维特征空间采用最近邻凸包分类器对样本进行分类。最近邻凸包分类器是一类以测试点到各类别凸包的距离为相似性度量,并按最近邻原则归类的分类算法。人脸识别实验结果证实,这种核函数方法与最近邻凸包分类算法的融合是可行的和有效的。 A novel pattern classification algorithm based on the kernel method named kernel nearest neighbor convex hull ( KNNCH ) algorithm is presented in this paper. First, the data from the input space are projected into a higher dimensional feature space by replacing the inner product with an appropriately chosen kernel function. Then, the nearest neighbor convex hull(NNCH) classifier is constructed for classification in the higher dimension feature space. In NNCH classifier, the distance between a test sample and a convex hull of training samples of a class is taken as the similarity measure for classification. According to the nearest neighbor rule, a test sample will be classified to the class of the nearest convex hull. The experiments on face recognition show good performance of the combination of kernel method and NNCH classifier.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第7期1209-1213,共5页 Journal of Image and Graphics
基金 国家自然科学基金资助项目(60472060)
关键词 核最近邻凸包分类 最近邻凸包分类 模式识别 人脸识别 kernel nearest neighbor convex hull ( KNNCH ) classifier, nearest neighbor convex hull ( NNCH ) classifier, pattern recognition, face recognition
  • 相关文献

参考文献12

  • 1Boser B E,Guyon I M,Vapnik V N.A training algorithm for optimal margin classifiers[A].In:Proceedings of the 5th Annual Workshop on Computational Learning Theory[C],Pittsburgh,PA,USA,1992:144-152.
  • 2Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.
  • 3Scholkopf B,Smola A,Muller K R.Kernel principal component analysis[A].In:Proceedings of Artificial Neural Networks-ICANN'97[C],Lausanne,Switzerland,1997:583-588.
  • 4Mika S,Ratsch C,Weston J,et al.Fisher discriminant analysis with kernels[A].In:Proceedings of IEEE Neural Networks for Signal Processing Workshop[C],Madison,Wiscosin,USA,1999:41-48.
  • 5Bach F,Jordan M I.Kernel independent component analysis[R].Technical Report CSD-01-1166,Computer Science Division,University of California,Berkeley,CA,USA,2001.
  • 6Bennett K P,Bredensteiner E J.Duality and geometry in SVM classifiers[A].In:Proceedings of Seventeenth International Conference on Machine Learning[C],Stanford University,CA,USA,2000:57-64.
  • 7王日爽编著.泛函分析与优化理论[M].北京航空航天大学出版社,2003
  • 8Cover T M,Hart P E.Nearest neighbor pattern classification[J].IEEE Transactions on Information Theory,1967,13(1):21-27.
  • 9Vincent P,Bengio Y.K-local hyperplane and convex distance nearest neighbor algorithms[A].In:Dietterich T G,Becker S,Ghahramani Z,editors.Advances in Neural Information Processing Systems 14[C],Cambridge,MA,USA:MIT Press,2002:985-992.
  • 10Cover T M.Geometrical and statistical properties of systems of linear inequalities with application in pattern recognition[J].IEEE Transactions on Electronic Computers,1965,EC-14:326-334.

共引文献19

同被引文献62

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部