期刊文献+

一种基于模拟退火的多目标Memetic算法 被引量:4

A Simulated-Annealing-Based Multi-Objective Memetic Algorithm
下载PDF
导出
摘要 为了改善多目标进化算法的搜索效率,提出了基于模拟退火的多目标Memetic算法.此算法根据Pareto占优关系评价个体适应值,采用模拟退火进行局部搜索,并结合交叉算子和基于网格密度的选择机制改善算法的收敛速度和解的均衡分布.flowshop调度问题算例的仿真结果表明,基于模拟退火的多目标Memetic算法能够产生更接近Pareto前沿的近似集. In order to improve the search efficiency of multi-objective evolutionary algorithms, a multi-objective Memetie algorithm based on simulated annealing is proposed. The method evaluates the individual fitness based on Pareto dominance relationship, applies simulated annealing to local search, and uses the crossover operator and a grid-density-based selection scheme to improve the convergence of the algorithm and to enhance the uniform distribu- tion of solutions. Simulations on multi-objective flowshop scheduling problems show that the proposed algorithm can generate approximation sets closer to the Pareto front of the problem.
出处 《信息与控制》 CSCD 北大核心 2007年第1期29-33,共5页 Information and Control
基金 国家自然科学基金资助项目(60174009)
关键词 多目标优化 模拟退火 MEMETIC算法 网格密度 flowshop调度问题 multi-objective optimization simulated annealing Memetie algorithm grid density flowshop scheduling problem
  • 相关文献

参考文献11

  • 1Ulungu E L,Teghem J,Fortemps P H,et al.MOSA method:A tool for solving multiobjective combinatorial optimization problems[J].Journal of Multi-criteria Decision Analysis,1999,8 (4):221 - 236.
  • 2Suppapitnarm A,Seffen K A,Parks G T,et al.Simulated annealing:An alternative approach to true multiobjective optimization[J].Engineering Optimization,2000,33 (1):33 - 59.
  • 3Czyzak P,Jaszkiewicz A.Pareto simulated annealing-A metaheuristic technique for multiple-objective combinatorial optimization[J].Journal of Multi-criteria Decision Analysis,1998,7 (1):34 -47.
  • 4Zitzler E,Thiele L.Multiobjective evolutionary algorithms:A comparative case study and the strength Pareto approach[J].IEEE Transactions on Evolutionary Computation,1999,3 (4):257 - 271.
  • 5Knowles J,Corne D.M-PAES:A Memetic algorithm for multiobjective optimization[A].Proceedings of the 2000 Congress on Evolutionary Computation[C].Piscataway,NJ,USA:IEEE,2000.325 -332.
  • 6Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6 (2):182 - 197.
  • 7Suman B.Study of simulated annealing based algorithms for multiobjective optimization of a constrained problem[J].Computers and Chemical Engineering,2004,28(9):1849 - 1871.
  • 8Ishibuchi H,Yoshida T,Murata T.Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling[J].IEEE Transactions on Evolutionary Computation,2003,7 (2):204 - 223.
  • 9Fieldsend J E,Everson R M,Singh S.Using unconstrained elite archives for multiobjective optimization[J].IEEE Transactions on Evolutionary Computation,2003,7 (3):305 - 323.
  • 10Tan K C,Lee T H,Khor E F.Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization[J].IEEE Transactions on Evolutionary Computation,2001,5(6):565 -588.

同被引文献42

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部