期刊文献+

改进的粒子群算法用于图像分割 被引量:2

Image segmentation with Otsu based on improved PSO
下载PDF
导出
摘要 提出了一种将保证收敛粒子群算法与最大类间方差法相结合的快速阈值分割法。该方法根据最大类间方差法的原理以分离度大小作为判断粒子优劣的准则,即分离度越大粒子就越好,并采用粒子群算法对图像进行多目标优化搜索。实验表明,该算法在继承标准粒子群算法易于实现、实时性好等优点的同时,还避免了标准PSO算法存在的早熟收敛问题,具有更强的寻优能力。 Threshold method is one of the most basic and important techniques for image segmentation because of its simple-realization and good result. This paper proposes a rapid threshold method which combines the GCPSO with Otsu. This method uses the separation level to judge whether a particle is good or bad based on Otsu principle, and the GCPSO is designed to optimize the decision variables. The experiment shows that this algorithm retains the simple-operation and good real time of standard PSO, and also solves the premature convergence problem, thus it has better search capacity.
出处 《佛山科学技术学院学报(自然科学版)》 CAS 2007年第3期15-18,共4页 Journal of Foshan University(Natural Science Edition)
关键词 GCPS0 最大类间方差法 阈值分割 GCPSO Otsu thresholding segmentation
  • 相关文献

参考文献8

  • 1杨晖.图像分割的阈值法研究[J].辽宁大学学报(自然科学版),2006,33(2):135-137. 被引量:45
  • 2KENNEDY J,EBERHART R C.Particle swarmoptimization[C]// In:Proceedings of IEEE International Conference on Neural Networks.Perth,Australia:[s.n.],1995(4):1942-1948.
  • 3KENNEDY J,SHI Y,RUSS C.EBERHART.A Modified Particle Swarm Optimizer[C].In:IEEE International Conference of Evolutionary Computation.Anchorage,Alaska:[s.n.],1998.
  • 4SHI Y,EBERHART R C.Empirical Study of Particle Swarm Optimization[C]// In:Proceedings of the Congress on Evolutionary Computation.Washington D.C:[s.n.].1999:1945-1949.
  • 5VAN DEN BERGH F,ENGELBRECHT A P.A New Locally Convergent Particle Swarm Optimizer[C]// In:Proceedings of the IEEE International Conference on Systems,Man and Cybernetics.[S.l.]:[s.n.],2002(3):94-99.
  • 6徐小慧,张安.基于粒子群优化算法的最佳熵阈值图像分割[J].计算机工程与应用,2006,42(10):8-11. 被引量:31
  • 7柴本成.基于最大方差比的图像二值化算法[J].浙江万里学院学报,2005,18(4):44-46. 被引量:4
  • 8RUSS C,EBERHART,Y SHI.Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization[C]// IEEE Service Center,Piscataway.NJ:Proceedings of the Congress on Evolutionary Computing,San Diego USA,2000:84-89.

二级参考文献30

  • 1章毓晋.图像工程(上册)-图像处理和分析[M].北京:清华大学出版社,1999..
  • 2Pal N R,Pal S K.A review on image segmentation techniques[J].Pattern Recognition,1993 ;26(9):1277~1294
  • 3Nobuyuki Otsu.A threshold selection method from gray-level histograms[J].IEEE Trans on Systems,Man,and Cybernetics,1979;9 (1):62~66
  • 4Pun T.A new method for gray-level picture thresholding using the entropy of the histogray[J].Signal Process,1980; 2 (3):223~237
  • 5Kapur J N,Sahoo P K,Wong A K C.A new method of gray level picture thresholding using the entropy of the histogram[J].Computer Vision,Graphics,and Image Processing,1985 ;29(2):273~285
  • 6Yen J C,Chang F J,Chang S.A new criterion for automatic multilevel thresholding[J].IEEE Trans On Image Processing,1995; 4 (3):370~377
  • 7Sahoo P K,Wong A K C.A survey of thresholding techniques[J].Computer Vision,Graphics,and Image Processing,1988 ;41:233~260
  • 8Kennedy J,Eberhart R C.Particle swarmoptimization[C].In:Proceedings of the 1995 IEEE International Conference on Neural Networks,Piscataway,NJ,Perth,IEEE service center,1995:1942~1948
  • 9Shi Y,Eberhart R C.A modified particle swarm optimizer[C].In:Pro/s ceedings of the IEEE International Conference on Evolutionary Computation,Piscataway,NJ,Anchorage,AK USA:IEEE service center,1998:69~73
  • 10Clerc M,Kennedy J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J].IEEE Transactions on Evolutionary Computation,2002 ;6 (1):58~73

共引文献76

同被引文献22

  • 1Kennedy J,Eberhart R C.Particle Swarm Optimization[C]//IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE Press,1995:1942-1948.
  • 2Eberhart R C,Kennedy J.A New Optimizer Using Particle Swarm Theory[C]//Proc of the 6th International Symposium on Micro Machine and Hunan Science.Nagoya,Japan:[s.n.],1995:9-43.
  • 3Poli R,Kennedy J,Blackwell T.Particle swarm optimization[J].Swarm Intell,2007(1):33-57.
  • 4Marques L,Nunes U,de Almeida A T.Particle swarm-based olfactory guided search[J].Auto Robot,2006,20:277-287.
  • 5EI-Gallad A,EI-Hawary M,Sallam A,et al.Enhancing the particle swarm optimizer via proper parameters selection[C]//IEEE CCECE02 Proceedings.Canadian:IEEE Press,2002:792-797.
  • 6朱小六,熊伟丽,徐保国.基于模拟退火技术的QDPSO算法[J].计算机工程,2007,33(15):209-210. 被引量:2
  • 7王玥玥,王秋光.基于图像边缘信息的2维阈值分割方法[J].中国图象图形学报,2007,12(1):78-81. 被引量:33
  • 8黄辉先,陈资滨.一种改进的粒子群优化算法[J].系统仿真学报,2007,19(21):4922-4925. 被引量:28
  • 9Manikandan S. Rarnar K. Irut hayarajan M W. ct al. Multilevel Thresholding for Segmentation of Medical Brain Images Using Real Coded Genetic Algorithm[J]. Measurement. 2011. ,17: 558-568.
  • 10J Fan S K S. Lin Y. A Multi-level Thresholding Approach Using It l l ybrid Optimal Estimation Algorithm[J]. Pattern Recognition l.cu crs . 2007. 28(5): 662-669.

引证文献2

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部