摘要
利用Adams谱序列,May谱序列和上纤维序列等工具,并以某些相对低维的Ext群的结果为基础,具体地计算了Ext群中的某些元的第一阶数与第二阶数,并由此得出在Adams谱序列中乘积■_(s+3)g_0∈ExtsA+5,(s+3)p2q+(s+3)pq+(s+3)q+s(Zp,Zp)非平凡,并且收敛到πS中的非平凡的p阶元素,其中p≥7的奇数,0≤s<p-3,q=2(p-1),S是奇素数球谱.
It is shown that in the Adama spectral sequence the productγ^-s+3g0∈Exts^A+5,(s+3)p2q+(s+3)pq+(s+3)q+s(Zp,Zp) and converges nontrivially to an element of order p in π. S, by using Adams spectral sequence, May spectral squence and cofibration ect. and by using some concorete caculation on first degrees and second degrees of the elements in involved low dimensional Ext group, where p≥7 is an odd prime, 0≤s 〈p-3, q =2(p-1) ,and S is an odd primep sphere spectrum.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2007年第3期395-398,402,共5页
Journal of Natural Science of Heilongjiang University