期刊文献+

基于支持向量机的乳腺癌辅助诊断 被引量:17

Computer-aided Diagnosis of Breast Cancer Based on Support Vector Machine
下载PDF
导出
摘要 采用支持向量机、K-近邻法(K-NearestNeighbor,K-NN)、概率神经网络(ProbabilisticNeuralNetwork,PNN),结合乳腺肿瘤的细针穿刺细胞病理学临床数据诊断乳腺癌。结果表明:当使用Sigmoid核函数时,SVM通过5次交叉验证的最佳平均分类准确率达到了96.24%,优于K-NN(95.37%),PNN(95.09%)等分类器,表明该方法有望成为一种实用的乳腺癌临床辅助诊断工具。 Combined with the breast fine needle aspiration cytology, the SVM, K-Nearest Neighbor (K-NN) and Probabilistic Neural Network (PNN) are used to diagnose the breast cancer. The best overall accuracy reaches 96.24% via SVM with Sigmoid kernel by using 5-fold cross validation, and is superior to those of other classifiers including K-NN (95.37%) and PNN (95.09%). Support vector machine is capable of being used as a potential application tool for SVM-aided clinical breast cancer diagnosis.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第6期140-144,共5页 Journal of Chongqing University
基金 重庆市自然科学基金资助项目(CSTC 2006BB5240) 重庆大学与新加坡国立大学国际联合科研资助项目(ARF-151-000-014-112)
关键词 支持向量机 K-近邻法 概率神经网络 乳腺癌 诊断 模式识别 support vector machine K-nearest neighbor probabilistic neural network breast cancer diagnosis pattern recognition
  • 相关文献

参考文献17

  • 1WINGO P A,TONG T,BOLDEN S.Cancer statistics[J].CA Cancer J Clin,1995,45:8-30.
  • 2HADJIISKI L,SAHINER B,CHAN H P.Advances in cornpurer-aided diagnosis for breast cancer[J].Current Opinion in Obstetrics and Gynecology,2006,18:64-70.
  • 3POLAT K,SAHAN S,KODAZ H,et al.A new classification method for breast cancer diagnosis:feature selection artificial immune recognition system(FS-AIRS)[J].LNCS,2005,3611:830-838.
  • 4PENA-REYES C A,SIPPER M.A fuzzy-genetic approach to breast cancer diagnosis[J].Artificial Intelligence in Medicine,1999,17:131-155.
  • 5VAPNIK V.The nature of statistical learning theory[M].New York:Springer.1995.
  • 6CAI C Z,HAN L Y,JI Z L,et al.SVM-Prot:web-based support vector machine software for functional classification of a protein from its primary sequence[J].Nucleic Acids Research,2003,31:3692-3697.
  • 7CAI C Z,HAN L Y,JI Z L,et al.Enzyme family classification by support vector machines[J].Proteins,2004,55:66-76.
  • 8CAI C Z,WANG W L,CHEN Y Z.Support vector machine classification of physical and biological datasets[J].International Journal of Modern Physics C,2003,14:575-585.
  • 9CAO L J,TAY F E H.Support vector machine with adaptive parameters in financial time series forecasting[J].IEEE Transactions on Neural Networks,2003,14:1506-1518.
  • 10GAVRISHCHAKA V V,GANGULI S B.Support vector machines as an efficient tool for high-dimensional data processing:application to sub-storm forecasting[J].Journal of Geophysical Research-Space Physics,2001,106:2991 1-29914.

同被引文献152

引证文献17

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部