期刊文献+

Infinitely Many Conservation Laws of a Differential-difference Equation and Backlund Transformation

一类微分差分方程的无穷守恒律及Backlund变换(英文)
下载PDF
导出
摘要 In this paper, with the help of the Lax representation, we show the existence of infinitely many conservation laws for a differential-difference equation,which is one of the Ladic-Ablowitz hierarchy, and the conservation density and the associated flux are given formularlly. We also demonstrate the relation between a continuous partial differential equation and the differential-difference equation, and give Backlund transformation for the former.
作者 杨潇 王军民
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第2期312-316,共5页 数学季刊(英文版)
基金 Supported by the NSF of Henan Prevince(062110300)
关键词 conservation law Lax representation Backlund transformation 微分差分方程 无穷守恒律 Backlund变换 松弛表示法
  • 相关文献

参考文献8

  • 1WU Yong-tang,GENG Xian-guo.A new hierarchy of integrable differential-difference equations and darboux transformation[J].J Phys A:Math Gen,1998,31:L667-L684.
  • 2WANG Jim-min,GENG Xian-guo.Explicit solutions of some (2+1)-dimensional differential-difference equations[J].Physics Letter A,2003,319:73-78.
  • 3ZHU Zuo-nong,XUE Wei-min,WU Xiao-nan.Infinitely conservation laws and integrable discretizations for some lattice soliton equations[J].J Phys A:Math Gen,2002,35:5079-5091.
  • 4TSUCHIDA T,UJINO H M,WADATI.Integrable discretization of couple nonlinear schrodinger equations[J].J Phys A:Math Gen,1999,32:2239-2262.
  • 5ADLER V E,YAMILOV R I.Explicit auto-transformations of integrable chains[J].J Phys A:Math Gen,1994,27:477-492.
  • 6CAO Ce-wen,GENG Xian-guo,WU Yong-tang.Prom the special 2+1 Toda lattice to the Kadomtsev-petviashvili equation[J].J Phys A:Math Gen,1999,32:8059-8078.
  • 7TSUCHIDA T,UJINO H M,WADATI.Integrable semi-discretization of couple modified KdV equations[J].J Math Phys,1998,39:4785-4929.
  • 8GENG Xian-guo,CAO Ce-wen.Algebro-geometric constructions of the discrete Abolowitz-Ladic flows and applications[J].J Math Phys,2003,V44:4573-4588.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部