期刊文献+

一种有效的频繁项双空间挖掘方法

Efficient Dual Space Search Algorithm for Mining Frequents
下载PDF
导出
摘要 给出了一种有效的频繁项双空间挖掘方法,充分利用事务数据库的二元特性,通过双空间映射把数据库的项目维和事务维联系在一起,提高了频繁项集的挖掘效率。计算机实验数据表明,双空间搜索挖掘方法对频繁项的数据挖掘是非常有效的,与传统的Apriori方法相比,新方法对数据扩散率和频繁项长短(最小支持度变化)均不敏感,挖掘效率提高很多。 The paper presents an efficient dual space search algorithm for mining frequents. The algorithm takes full advantage of the duality characteristic in the transaction database via dual space mapping. The items dimension and transaction dimension in the transaction database are combined to increase the efficiency of mining frequents. It proves that dual space search algorithm is very efficient to mining frequents by way of experiment on the computer, new method is not sensitive to scale of data or the length of frequents.
作者 王晓峰
出处 《计算机工程》 CAS CSCD 北大核心 2007年第11期29-30,46,共3页 Computer Engineering
基金 上海市重点学科建设基金资助项目(T0602) 上海市教委科研基金资助项目
关键词 数据挖掘 频繁项集 双空间挖掘算法 关联规则 Data mining Frequent items sets Dual space mining algorithm Associate rule
  • 相关文献

参考文献10

二级参考文献24

  • 1[1]R Agrawal, T Imielinski, A Swami. Mining association rules between sets of items in large databases. In: Peter Buneman, Sushil Ajodia eds. Proc of ACM SIGMOD Conf on Management of Data, New York: ACM Press, 1993. 207~216
  • 2[2]J Han, J Pei. Mining frequent patterns by pattern-growth: Methodology and implications. ACM SIGKDD Explorations (Special Issue on Scalable Data Mining Algorithms), 2000, 2(2): 14~20
  • 3[3]J Han, J Pei, Y Yin. Mining frequent patterns without candidate generation, In: M Dunham, J Naughton, W Chen eds. Proc of 2000 ACM-SIGMOD Int'l Conf on Management of Data (SIGMOD'00). Dallas, TX, New York: ACM Press, 2000. 1~12
  • 4[4]J Roberto, Jr Bayardo. Efficiently mining long patterns from databases. In: Ashutosh Tiwary, Boeing Co eds. Proc of the 1998 ACM-SIGMOD Int'l Conf on Management of Data (SIGMOD'98), New York: ACM Press, 1998. 85~93
  • 5[5]D-I Lin, Z M Kedem. Pincer-Search: A new algorithm for discovering the maximum frequent set. In: Bertram Ludscher, Wolfgang May eds. Proc of the 6th European Conf on Extending database technology, Proceedings, Lecture Note in Computer 1377. Berlin: Springer 1998, 1998. 105~119
  • 6[6]Z Pawlak. Rough Sets Theoretical Aspects of Reasoning about Data. Holland: Kluwer Academic Publishers, 1991
  • 7[7]Hu Xiaohua. Knowledge discovery in database: An attribute-oriented rough set approach [Dissertation]. University of Regina, Canada, 1995
  • 8[8]Collections of data for developing, evaluating, and comparing learning methods. 2001. http://www.cs.toronto.edu/~delve/data/mushrooms/desc.html
  • 9Agrawal Rakesh, Srikant Ramakrishnan. Mining sequential patterns. In: Proceedings of the 11th International Conference on Data Engineering, Taipei, 1995,3~14
  • 10Agrawal Rakesh, Srikant Ramakrishnan. Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, Morgan Kaufmann,1994, 487~499

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部