期刊文献+

改进的人工鱼群算法 被引量:43

Improved Artificial Fish-school Algorithm
下载PDF
导出
摘要 通过对人工鱼群算法的研究,给出了改进的人工鱼群算法。采用最优个体保留策略对觅食行为进行改进,防止群体中最优个体的退化;给出加速个体局部搜索方法,改进算法中的聚群行为和追尾行为,使全局最优值更快地突现出来;根据双射的定义和性质,在不影响最终寻优结果的情况下对问题的搜索域进行"缩小",从而加速了全局搜索。仿真结果表明改进的人工鱼群算法具有求解精度高、寻优成功率高、收敛速度快、算法稳定等优点。 In this paper the Improved Artificial Fish-school Algorithm is proposed based on the study of the Artificial Fish-school Algorithm. The preying behavior is improved by introducing the strategy of keeping the best individual, and this method prevents the degenerating of the best individual in colony. The method of accelerating individual local searching is put forward, and it is used to improve the swarming behavior and fish's following behavior in order to make the global optimal value to be shown faster. Without influence on the final results, the searching area is "reduced" based on the definition and properties of bijection, so that global searching is accelerated. Several computer simulation results show that the Improved Artificial Fish-school Algorithm has some advantages such as higher precision of solution, higher efficiency of optimization, faster convergence rate, and better stabilization etc.
出处 《重庆师范大学学报(自然科学版)》 CAS 2007年第3期23-26,共4页 Journal of Chongqing Normal University:Natural Science
基金 广西自然科学基金项目(No.0542048) 广西民族大学重大科研基金项目(No.0609013)
关键词 人工鱼群算法 搜索域 双射 改进的人工鱼群算法 artificial fish-school algorithm searching area bijection improved artificial fish-school algorithm
  • 相关文献

参考文献9

二级参考文献24

  • 1戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 2Goldberg D E.Genetic algorithm in search,optimization and machine learning [M].Reading M A,USA:Addison-Wesley Publishing Company,Inc,1989.
  • 3Srinivas M,Patnaik L M.Adaptive probabilities of crossover and mutation in genetic algorithms [J].IEEE Trans.on Syst.,Man and Cybern.,1994,24(4):656-667.
  • 4李敏强.遗传算法的基本理论与应用[M].北京:科学出版社,2003..
  • 5Srinivas M, Pamaik L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(4): 656-667.
  • 6Jiao L C, Wang L. A Novel Genetic Algorithm Based on Immunity[J]. IEEE Transactions on System, Man, and Cyberaetics Part A: Systems and Humans, 2000, 30(5) : 552-561,.
  • 7De Castro L N, Von Zuben F J, Learning and Optimization Using the Clonal Selection Principle[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(3) : 239-251.
  • 8Ada G L, Nossal G. The. Clonal Selection Theory[J]. ScientificAmerican, 1987, 257(2): 50-57.
  • 9王小平 曹立明.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社,2003..
  • 10WILSON S. The animat path to AI[A]. Proceedings of the First International Conference on the Simulation of Adaptive Behavior[C]. Cambridge: MIT Press, 1991.

共引文献1136

同被引文献324

引证文献43

二级引证文献247

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部