期刊文献+

一类基于比率的捕食者-食饵系统的周期解

Periodic solution for delayed and ratio-dependent predator-prey system
下载PDF
导出
摘要 研究一类非自治的具有时滞和基于比率且有Beddington-DeAngelis功能性反应的两种群捕食者-食饵周期系统,利用Mawhin重合度理论建立了这类系统的正周期解存在的一个充分性判据. In this paper, a class of predator-prey system with delayed and ratio-dependent is studied. By using the continuation theorem based on coincidence degree theory, establishes the existence result of positive periodic solution for the periodic predator-prey system with Beddington-DeAngelis functional response. A sufficient condition is derived about it.
作者 刘振杰
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2007年第3期382-384,共3页 Journal of Harbin University of Commerce:Natural Sciences Edition
基金 黑龙江省教育厅科学技术研究项目(11513043)
关键词 时滞 BEDDINGTON-DEANGELIS功能性反应 周期解 重合度 time-delay Beddington-DeAngelis functional response periodic solution coin- cidence degree
  • 相关文献

参考文献11

  • 1ARDITI R,GINZBURG L R,AKCAKAYA H R.Variation in plankton densities among lakes:A case for ratio-dependent models[J].American Nat,1991 (138):1287 -1296.
  • 2ARDITI R,PERRIN N,SAIAH H.Functional response and heterogeneities:An experiment test with cladocerans[J].OIKOS,1991 (60):69-75.
  • 3GUTIERREZ A P.The physiological basis of ratio-dependent predator-prey theory:A methbolic pool model of Nicholson's blowflies as an example[J].Ecology,1992 (73):1552-1563.
  • 4BEDDINGTON J R.Mutual interference between parasites or predators and its effect on searching efficiency[J].J.Animal.Ecol.1975(44):331 -340.
  • 5DEANGELIS D L,GOLDSTEIN R A,O' NEILL R V.A model for trophic interaction[J].Ecology,1975 (56):881-892.
  • 6Yang Kuang.Delay differential equation with applications in population dynamics[M].New York:Academic Press,1983.
  • 7FREEDMAN H I,RAO V S.The tradeoff between mutual interference and time lag in predator-prey system[J].Bull.Math.Biol.,1983(45):991 -1004.
  • 8Yang Kuang,BERETTA E.Global qualitative analysis of a ratio-dependent predator-prey system[J].J.Math.Biol.,1998(36):389 -406.
  • 9张正球,王志成.基于比率的三种群捕食者-食饵扩散系统的周期解[J].数学学报(中文版),2004,47(3):531-540. 被引量:37
  • 10Meng Fan,Yang Kuang.Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response[J].J.Mathematical Analysis and Applications.2004,295(1):15 -39.

二级参考文献22

  • 1Kishimoto K., Coexistence of any number of species in the Lotka-Volterra competition system over two patches, Theoretical Population Bio., 1990, 38: 149-158.
  • 2Takeuchi T., Conflict between the need to forage and the need to avoid competition: Persistence of two-species model, Math. Biosi., 1990, 99: 181-194.
  • 3Gaines R. E., Mawhin J. L., Coincidence Degree and Nonlinear Differential Equations, Berlin: SpringerVerlag, 1977.
  • 4Song X., Chen L., Persistence and global stability for nonautonomous predator-prey system with diffusion and time delay, Computers Math. Applic., 1998, 35: 33-40.
  • 5Song X., Chen L., Harmless delays and global attractivity for nonautonomous predator-prey system with dispersion, Computers Math. Applic., 2000, 39: 33-42.
  • 6Xu R., Chen L. S., Persistence and stability of two-species ratio-dependent predator-prey system with time delay in a two-patch environment, Computers Math. Applic., 2000, 40: 577-588.
  • 7Hongliang Z., Kuiehen D., Global stability and periodic orbits for a two-patch diffusion predator-prey model with time delays, Nonlinear Anal., 2000, 41: 1083-1096.
  • 8Arditi R., Ginzburg L. R., Coupling in predator-prey dynamics: ratio-dependence, J. Theoretical Biol., 1989,139: 311-326.
  • 9Hanski I., The functional response of predator: worries about scMe, TREE, 1991, 6: 141-142.
  • 10Cushing J. M., Integro-differential equations and delay models in a population dynamics, in "Lecture Notes in Biomathematics", Berlin, Heidelberg: Springer-Verlag, 1977, 20.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部