期刊文献+

多模态背景下快速运动目标检测的研究 被引量:3

Research of fast moving object detection in multimode background
下载PDF
导出
摘要 为了使运动目标检测算法能够适应场景复杂的情况,可采用高斯混合模型进行建模的方法,本文在此基础上提出了一种新的快速检测算法。该算法基于像素时域和空域相关性,利用这一性质可以减少高斯混合模型的个数,从而提高算法运行速度,经验证发现算法的精确度没有大的降低;同时给出了一种卡尔曼预测的更新算法,这既保证了稳定性又能快速建立背景模型。实验结果表明,该算法在不降低原来算法精确度的基础上,有效地提高了算法的速度。 In order to adapt the algorithm of moving object detection to complex scene, a method of Gaussian mixture model is presented, and in light of the above a new algorithm of fast detection is proposed in this paper. This algorithm is based on correlation in temporal and spacial domains, which reduce the number of models and improve running speed, and fortunately does not lower accuracy too much; at the same time, updating method based on Kalman predicting is proposed,and the method increases the speed of background modeling and keeps stability. Additionally, experiment results show that the proposed algorithm not only guarantees accuracy but also improves detecting speed effectively.
作者 孟凤 王成儒
出处 《电子测量技术》 2007年第6期33-35,79,共4页 Electronic Measurement Technology
关键词 高斯混合模型 卡尔曼预测 运动目标检测 背景减 Gaussian mixture model Kalman predicting moving object detection background subtraction
  • 相关文献

参考文献7

  • 1COLLINSR T,LIOTON A J,KANADE T.A system for video surveillance and monitoring[C].Proc.Am.Nuclear Soc.(ANS)Eighth Int'l Topical Meeting Robotic and Remote Systems,Apr.1999.
  • 2STAUFFER C,GRIMSON W E L.Adaptive background mixture models for real-time tracking[C].Proc.Conf.Computer Vision and Pattern Recognition,1999,2:246-252.
  • 3CARMINATI L,BENOIS-PINEAU J.Gaussian Mixture Classification For Moving Object Detection In Video Surveillance Environment[J].IEEE,2005.
  • 4张旭东,钱玮,高隽,方廷健.视频图像中运动目标的实时检测[J].系统工程与电子技术,2005,27(3):419-421. 被引量:7
  • 5张明杰,李翠华,刘明业.基于高斯混合模型的海面运动目标检测[J].计算机工程与应用,2005,41(5):27-29. 被引量:7
  • 6刘亚,艾海舟,徐光佑.一种基于背景模型的运动目标检测与跟踪算法[J].信息与控制,2002,31(4):315-319. 被引量:141
  • 7GIANLUCA B,MASSIMO B.Background estimation with gaussian distribution for image segmentation,a fast approach[C].IEEE International Workshop on Measurement Systems for Homeland Security,Contraband Detection and Personal Safety Orlando,FL,USA,29-30 March 2005.

二级参考文献29

  • 1Zhang TianXu,Zuo ZhengRong,Zuo Zhen. Detection of Sea Surface Small Targets in Infrared Images Based on Multilevel Filter and Minimum Risk Bayes Test[J].International Journal of Pattern Recognition and Artificial Intelligence,2000; 14(7) :907~918
  • 2Sciotti M,Lombardo P.Ship detection in SAR images:a segmentationbased approach[C].In:IEEE Radar Conference,Atlanta,Georgia,2001:81~86
  • 3Lombardo P,Sciotti M.Segmentation-based technique for ship detection in SAR images[J].IEEE Proceedings on Radar,Sonar and Navigation,2001; 148 (3): 147~159
  • 4Wang P,Chong J,Wang H.Ship detection of the airborne SAR images[C].In:IEEE International Geoscience and Remote Sensing Symposium, Honolulu Hawaii,2000:348~350
  • 5Ren Mingwu,Cao Yulong. One Effective Method for Ship Recognition in Ship Locks[J].SPIE Proc,1999;3720
  • 6Cao Yulong,Ren Mingwu. On-line Monitoring for Ships in Lock[J].SPIE Proc, 1998 ;3534
  • 7Grimson W E L,Stauffer C,Romano R et al. Using Adaptive tracking to classify and monitor activities in a site[C].In:CVPR,Santa Barbara,California, 1998: 22~31
  • 8Stauffer C,Grimson W E L. Adaptive background mixture models for real-time tracking[C].In:IEEE Conference on Computer Vision and Pattern Recognition,Ft Collins,CO, 1999:246~252
  • 9Ivanov Y,Stauffer C Bobick,Grimson W E L.Video surveillance of interactions[C].In:Second IEEE Workshop on Visual Surveillance,Fort Collins, Colorado, 1999: 82~90
  • 10Nir Friedman,Stuart Russell. Image segmentation in video sequences:A probabilistic approach[C].In:Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence(UAI),Rhode Island,1997

共引文献152

同被引文献25

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部