期刊文献+

基于粒子群算法的阵列天线波束赋形 被引量:9

Pattern synthesis of array antenna based on PSO
下载PDF
导出
摘要 文中介绍了粒子群算法的基本原理和基本流程,并将其用于阵列天线的波束赋形设计。粒子群算法是在遗传算法基础上发展起来的一种新的并行优化方法,可用于解决大量非线性、不可微和多峰值的复杂问题。与遗传算法不同的是,粒子群算法中的粒子有记忆功能,整个搜索过程是跟随当前最优粒子的过程,因此在大多数情况下,所有的粒子可能更快的收敛于最优解。而且粒子群算法理论简单,参数少,因此其应用更为广泛。文中把粒子群算法用于阵列天线的波束赋形,结果表明粒子群算法在对天线形状进行设计方面有很好的发展前景。 In this paper, the principle of particle swarm optimization (PSO)algorithm is introduced, by which pattern synthesis of array antenna is designed. PSO can be used in problems with mass nonlinear, nonderivative and multipeaked values, which is a new parallel optimization algorithm based on GA. Different from GA, members in PSO can remember and share information about best positions founding during their searching for food. Hence most of the time, PSO has faster convergence, Moreover, PSO has simpler principle, fewer parameters. So PSO can be used in various areas. In this paper PSO is used in pattern synthesis of antenna, and results indicate that PSO has better prospects in pattern synthesis of antenna.
出处 《电子测量技术》 2007年第6期43-45,共3页 Electronic Measurement Technology
关键词 粒子群算法 波束赋形 遗传算法 PSO pattern synthesis GA
  • 相关文献

参考文献8

  • 1KENNEDY J,EBERHART R C.Particle swarm optimization[C].Perth,Australia:Proc.IEEE Int.Conf.Neural Networks,1995:1942-1948.
  • 2KENNEDY,J.The behavior of particles[M].In V.W.Porto,N.Saravanan,D.Waagen,and A.E.Eiben,editors,Evolutionary Programming Ⅶ,pages581-590.Springer,1998.
  • 3李宁,孙德宝,岑翼刚,邹彤.带变异算子的粒子群优化算法[J].计算机工程与应用,2004,40(17):12-14. 被引量:60
  • 4BUCKLEY M J.Synthesis of shaped beam antenna patterns using implicitly constrained current elements[J].IEEE Transactions on Antenna and Propagation,1996,44(2):192-197.
  • 5吴建生,秦发金.基于MATLAB的粒子群优化算法程序设计[J].柳州师专学报,2005,20(4):97-100. 被引量:20
  • 6杨丽娜,丁君,郭陈江,许家栋.基于遗传算法的阵列天线方向图综合技术[J].微波学报,2005,21(2):38-41. 被引量:26
  • 7SHI Y,EBERHART R C.A modified Particle swarm optimizer[C].Anchorage,Alaska:IEEE International Conference on Evolutionary Computation,1998-05:69-73.
  • 8EBERHART R C.SHI Y.1 Comparison between genetic algorithms and particle swarm optimization[C].In:Procl the 7th AnnualConf,Evolutionary Programming,New York:Springer,Verlag,1998,611-618.

二级参考文献26

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2张荣沂.一种新的集群优化方法——粒子群优化算法[J].黑龙江工程学院学报,2004,18(4):34-36. 被引量:18
  • 3Kennedy J,Eberhart R C.Particle Swarm Optimization[C].In:Proc IEEE International Conference on Neural Networks,Ⅳ Piscataway,NJ:IEEE Service Center, 1995:1942~1948
  • 4Shi Y,Eberhart R C.Particle Swarm Optimization :developments,applications and resources[C].In:Proc Congress on Evolutionary Computation 2001 NJ:Piscataway,IEEE Press,2001:81~86
  • 5Shi Y,Eberhart R C.A modified particle swarm optimizer[C].In:IEEE World Congress on Computational Intelligence,1998:69~73
  • 6Shi Y,Eberhart R C.Fuzzy Adaptive Particle Swarm Optimization[C].In: Proc Congress on Evolutionary Computation, 2001:101~106
  • 7Lovbjerg M,Rasmussen T k,Krink T. Hybrid Particle Swarm Optimiser with Breeding and Subpopulation[C].In :Proc Congress on Evolutionary Computation, 2001
  • 8Ciuprina G,Ioan D,Munteanu I. Use of Intelligent-Particle Swarm Optimization in Electromagnetics[J].IEEE Trans on Magnetics ,2002;38(2): 1037~1040
  • 9Brits R,Engelbrecht AP,van den Bergh F.A Niching Panicle Swarm Optimizer[C].In:4th Asia-Pacific Conference on Simulated Evolution and Learning, 2002
  • 10van den Bergh F,Engelbrecht AP.A New Locally Convergent Particle Swarm Optimizer[C].In:IEEE Conference on Systems,Man,and Cybernetics, 2002

共引文献103

同被引文献62

引证文献9

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部