期刊文献+

基于支持向量机的软件可靠性早期预测 被引量:4

Early software reliability prediction based on the support vector machine
下载PDF
导出
摘要 文章将支持向量机理论引入到软件可靠性早期预测领域中来,提出了基于支持向量机的软件可靠性早期预测模型;通过对比仿真实验,证实了该模型同传统模型相比,具有预测精度高、泛化能力强及对样本数量的依赖程度低的特点。 The support vector machine(SVM) theory is introduced into the field of early software reliability prediction, and a model of early software reliability prediction based on the SVM is put forward. Simulation results show that compared with classic models, the new model has better prediction precision, better generalization ability and lower dependence on the number of samples.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第7期859-863,共5页 Journal of Hefei University of Technology:Natural Science
关键词 软件可靠性 早期预测 支持向量机 software reliability early prediction support vector machine(SVM)
  • 相关文献

参考文献8

  • 1Briand L C,Melo W L,W J.Assessing the applicability of fault-proneness models across object-oriented software project[J].Software Engineering,2002,28(7):706-720.
  • 2Khoshgoftaar T M,SzaboR M.Using neural networks to predict software faults during testing[J].Reliability,IEEE Transactions,1996,45(3):456-462.
  • 3Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 4Cristianini N.支持向量机导论[M].李国正,王猛译.北京:电子工业出版社,2004:15-60.
  • 5Schlkopf B,Smola A,Williamson R,et al.New support vector algorithms[J].Neural Computation,2000,(12):1207-1245.
  • 6Schlkopf B,Platt J,Taylor J S,et al.Estimating the support of a high-dimensional distribution[J].Neural Computation,2001,(13):1443-1471.
  • 7Chapelle O,Vapnik V.Choosing multiple parameters for support vector machines[J].AT&T Research Labs,2002,46(3):1-3.
  • 8Cherkassky V,Ma Y.Practical selection of SVM parameters and noise estimation for SVM regression[J].Special Issue on SVM,2002,24(15):82.

共引文献190

同被引文献32

  • 1李轩,郝克刚,葛玮.面向对象软件度量的分析和研究[J].计算机技术与发展,2006,16(11):38-41. 被引量:7
  • 2马飒飒,冯哲,赵守伟.基于SVR的软件可靠性预测模型研究[J].计算机工程与应用,2007,43(13):120-123. 被引量:5
  • 3王悠,罗燕京,易福华,房芳.基于用例的软件复杂度估算及应用[J].计算机技术与发展,2007,17(7):196-199. 被引量:3
  • 4Miller R,Lange E.Multidimensional sensor for gas analysis[J].Sensor and Actuators, 1986 (9) : 39-48.
  • 5Hong H-K,Hyun Woo Shin,Hyeon Soo Park,et al.Gas identification using micro gas sensor array and neural-network pattern recognition[J].Sensor and Actuators B,Chemical, 1996(33):68-71.
  • 6Cfistianini N,Shawe-Taylor J.An introduction to support vector machine and other kernel-based learning methods[M].Cambridge: Cambridge University Press, 2000.
  • 7Vapnik V N.Nature of statistical learning theory[M].[S.l.]:Springer-Verlag, 1995.
  • 8Zimmermann T,Nagappan N,Gall H,et al.Cross-project defect prediction:a large scale experiment on data vs.domain vs.process[C] //In:ESEC/FSE 2009.Amsterdam:ACM,2009:91-100.
  • 9Ostrand T J,Weyuker E J,Bell R M.Automating algorithms for the identification of fault-prone files[C] //In:Proceedings of the 2007 international symposium on Software testing and analysis.London,United Kingdom:ACM,2007:219-227.
  • 10Xing F,Guo P,Lyu M R.A novel method for early software quality prediction based on support vector machine[C] //In:Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering.Citeseer:[s.n.] ,2005:213-222.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部