期刊文献+

一种改进的自适应背景预测红外弱小目标检测算法 被引量:12

An Improved Algorithm of Infrared Weak and Small Targets Detection Based on Self-adaptive Background Prediction
下载PDF
导出
摘要 文章改进了自适应最小均方误差(LMS)算法,将基于历史检测效果的自适应最小二乘(RLS)算法应用于连续帧运动红外弱小目标检测。在已知n-1时刻滤波器抽头权系数的情况下,通过简单的更新,求出n时刻的优化滤波器抽头权系数。计算机仿真实验证明该算法能较大地提高图像信噪比,并以较低的虚警率在2~3帧内较为准确地检测出运动红外弱小目标。 In this paper, the algorithm of self-adaptive LMS is improved. The algorithm which based on historical effect of self-adaptive least-squares is applied in weak and small moving targets detection with consecutive frames. The optimal weight coefficient at the frame "n" can be calculated through simple upgrade when it is known at the frame of "n - 1 ". The experimental results show that the algorithm can largely increase the SNR of the images, and the moving targets can be detected within 2 or 3 frames with lower false alarm.
出处 《激光与红外》 CAS CSCD 北大核心 2007年第7期683-686,共4页 Laser & Infrared
关键词 背景预测 RLS算法 红外弱小目标 目标检测 background prediction RKS algorithm infrared weak and small targets target detection
  • 相关文献

参考文献5

二级参考文献17

  • 1陈振学,汪国有.基于自适应背景预测的红外弱小目标检测算法[J].激光与红外,2005,35(8):608-610. 被引量:25
  • 2[1]Wang D, Adaptive spatial/temporal/spectral filters for background clutter suppression and target detection. [ J ].in Opt. Eng. 1982,21:1033 - 1038.
  • 3[2]Ohki M Hashiguchi S. Two-dimensional LMS adaptive filters[ J]. IEEE Trans. Consumer Elect. 1991,37:66 - 73.
  • 4[3]Simon Haykin, Liang Li. Nonlinear Adaptive Prediction of Nonstationary Signals[ J]. IEEE Trnas on Signal Processing, 1994,43(2).
  • 5[4]CASTELLANO G,BOYCE J,SANDLER M.Moving target detection in infrared imagery using a regularized cdwt optical flow[C]//Proceedings of IEEE,Computer Vision Beyond the Visible Spectrum:Methods and Applications,1999:13-22.
  • 6张贤达,现代信号处理,1995年,324页
  • 7Barnett J. Statistical analysis of median subtraction filtering with application to point detection in infrared backgrounds [ A ]. Proc. SPIE, 1989,1050 : 10 - 18.
  • 8Otazo J J,Tung E W. Parenti R R. Digital filters for infrared target acquisition sensors [ A]. Proc. SPIE, 1980,238 :78 -90.
  • 9David P, Casasent, Amokelin J, et al. Wavelet and Gabor transforms for detection [ J ]. Optical Engineering, 1992,31(9) : 1893 - 1898.
  • 10Tom V T, Peli T, Leung M. Morphology-based algorithm for point-target detection in infrared backgrounds[ A ].Proc. SPIE, 1993,1954:2 - 11.

共引文献82

同被引文献85

引证文献12

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部