期刊文献+

基于Contourlet的图像PCA去噪方法 被引量:4

Contourlet image de-noising based on principal component analysis
下载PDF
导出
摘要 提出了一种通过主分量分析(PCA)对Contourlet域中噪声能量的估计来实现去噪的新方法。Contourlet变换是一种结合多分辨率分析和方向性滤波的小波变换,它除了具有一般小波变换的多尺度、时频局域性外,还具有多方向性、各向异性等特征。因此,Contourlet能有效地捕获到自然图像中的轮廓,并对其进行稀疏表示。目前使用的小波去噪方法基本上都是建立在对噪声方差估计的基础上,而在Contourlet变换系数中,通过建立数学模型对噪声方差进行精确的估计是很困难的。算法无需对噪声方差进行估计,更具有实用价值。实验结果显示,与小波软、硬阈值去噪算法和基于小波的图像PCA去噪方法比较,该算法不仅提高了图像的信噪比,而且图像视觉效果也明显改善。 This paper proposes a new method which utilizes noise energy,instead of its variance,to perform image de-noising based on Principal Component Analysis (PCA) in Contourlet domain.The Contourlet transform is a new extension of the wavelet transform in two dimensions.Its main feature is combining non-separable directional filter with wavelet fiher.Most of the existing methods for image de-noising rely on accurate estimation of noise variance.However,the estimation of noise variance is very hard in Contourlet domain.Propose a new method for image de-noising based on the Contourlet transform.Experiments in de-noising the typical image Barbara show that the performance of the proposed method is obviously superior both in vision and in PSNR.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第21期46-48,51,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60572011/f010204) "985"特色项目计划基金(No.LZ985-231-582627) 甘肃省自然科学基金(the Natural Science Foundation of Gansu Province of China under Grant No.YS021-A22-00910)
关键词 CONTOURLET变换 主分量分析 图像去噪 Contourlet transform Principal Component Analysis image de-noising
  • 相关文献

参考文献14

  • 1Chang S G,Yu Bin,Vattereli M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Trans Image Processing,2000,9:532-1546.
  • 2Donoho D L,Johnstone I M.Adapting to unknown smoothness via wavelet shrinkage[J].Journal of American Statistical Assoc,1995,90(432):1200-1224.
  • 3Chang S G,Yu Bin,Vattereli M.Spatially adaptive wavelet thresholding with context modeling for image denoising[J].IEEE Trans Image Processing,2000,9:1522-1530.
  • 4Donoho D L.De-noising by soft thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627.
  • 5Do M N,VETTERLI M.The contourlet transform:an efficient directional multiresolution image representation[J].IEEE Transactions on Image Processing,2005,14(12):2091-2106.
  • 6Do M N.Directional multiresolution image representations[D].Department of Communication Systems,Swiss Federal Institute of Technology Lausanne,2001,11:71.
  • 7LI S.A tutorial on principal components analysis[EB/OL].[2002].http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf.
  • 8Jackson J E.A users guide to principal components analysis[M].[S.l.]:John Wiley & Sons Canada,Ltd,2003.
  • 9Wongsawat Y,Rao K R,Oraintara S.Multichannel SVD-based image de-noising[C]//IEEE International Symposium on Circuits and Systems (ISCAS),2005,6056:5990-5993.
  • 10Moeylund T B.Principal component analysis-an introduction Technical Report CVMT 01-02[R/OL].Laboratory of Computer Vision and Media Technology,Aalborg University.2001.http://ekstern.aau.dk/.

二级参考文献8

  • 1Shark L K, Yu C. Denoising by optimal fuzzy threshold in wavelet domain[J]. Electronics Letters, 2000,36(6) :581-582.
  • 2Liu Pin, Wang Yuanyuan, Wang Weiqi. Spectrogram enhancement algorithmt A soft thresholding-based approach[J]. Ultrasound in Medical and Biology, 1999,25(5):839-846.
  • 3Israel Cohen, Shalom Raz, David Malah. Translation -invariant denolsing using minimum deseription length eriterion[J]. Signal Proeessing, 1999,75 (3): 201-223.
  • 4Liu Wei, Ma Zheng-ming. Wavelet image threshold denoising based on edge detection [J]. Journal of Image and Graphics,2002,7(8) : 788-793.
  • 5Mihcak M K, Kozintesv I, Ranchandran K et al. Low-complexity image denoising based on statistical modeling of wavelet coefficients [J]. IEEE Signal Processing Letters, 1999,6 (12) :300-302.
  • 6谢杰成,张大力,徐文立.小波图象去噪综述[J].中国图象图形学报(A辑),2002,7(3):209-217. 被引量:254
  • 7柳薇,马争鸣.基于边缘检测的图象小波阈值去噪方法[J].中国图象图形学报(A辑),2002,7(8):788-793. 被引量:31
  • 8曾三友,康立山,丁立新.一种图象恢复效果接近最优的正则化方法[J].小型微型计算机系统,2004,25(2):275-279. 被引量:1

共引文献11

同被引文献46

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部