期刊文献+

一种改进的遗传聚类算法 被引量:26

Improved Genetic Algorithm-based clustering approach
下载PDF
导出
摘要 给出了一种改进的基于遗传算法的聚类方法。传统的K-means算法局部搜索能力强,但是对初始化比较敏感,容易陷入局部最优值。基本的基于遗传算法的聚类算法是一种全局优化算法,但是其局部搜索能力较差,收敛速度慢。针对这两个方法所存在的问题,提出了一种改进的聚类算法。该方法结合了两个方法的优点,引入了K-means操作,再用遗传算法进行优化,并且在该方法中改进了遗传算法中的交叉算子,大大提高了基于遗传算法的聚类算法的局部搜索能力和收敛速度。 An improved clustering approach is described in this paper.The traditional K-means algorithm is good at locally searching capability,but it is sensitive to the initialization,easy to get stuck at locally optimal values.The simple geneticalgorithm-based clustering method is a global optimize approach,but it is weak at the locally searching capability and convergence speed.Take the problems which exists in the two algorithms into account,a new clustering algorithm is put forwarded in this paper.The new approach integrates the advantages of the two algorithms ,which introduces the K-means operation and then utilizes the genetic algorithm to do some optimization and also improved the crossover operation in the genetic algorithm,improves the locally searching capability and convergence speed of the genetic algorithm-based clustering algorithm.
作者 陆林花 王波
出处 《计算机工程与应用》 CSCD 北大核心 2007年第21期170-172,共3页 Computer Engineering and Applications
关键词 遗传算法 聚类分析 K-MEANS算法 genetic algorithm clustering analysis K-means algorithm
  • 相关文献

参考文献8

  • 1Mantawy A H,Abdel-Magid Y L,Selim S Z.Integration genetic algorithm,Tabu search,and Simulated annealing for the unit commitment problem[J].IEEE Transactions on Power Systems,1999,14(3):829-836.
  • 2Mchalewicz Z.Genetic Algorithm +data structures=evolution programs[M].2nd.New York:Spring-Verlag,1994.
  • 3Babu G P,Murty M N.Clustering with evolution strategies[J].Pattern Recognition,1994:321-329.
  • 4Murthy C A,Chowdhury N.In search of optimal clusters using genetic algorithms[J].Pattern Recognition Lett,1996:825-832.
  • 5Maulik U,Bandyopadhyay S.G enetic algorithm-based clustering technique[J].Pattern Recognition,2000,33:1455-1465.
  • 6Krishna K,Murty M N.G enetic K-Means algorithm[J].IEEE Trans Syst Man Cybern:Part B,1999,29(3):433-439.
  • 7Hall L O,Ozyurt I B,Bezdek J C.Clustering with a genetically optimized approach[J].IEEE Transactions on Evolutionary Computation,1999,3 (2):103-112.
  • 8张雷,李人厚.人工免疫C-均值聚类算法[J].西安交通大学学报,2005,39(8):836-839. 被引量:17

二级参考文献10

  • 1刘静,钟伟才,刘芳,焦李成.免疫进化聚类算法[J].电子学报,2001,29(z1):1868-1872. 被引量:43
  • 2刘健庄,谢维信,黄建军,李文化.聚类分析的遗传算法方法[J].电子学报,1995,23(11):81-83. 被引量:27
  • 3Hall L O, Ozyurt I B, Bezdek J C. Clustering with a genetically optimized approach [J]. IEEE Transactions on Evolutionary Computation, 1999,3(2):103-112.
  • 4Babu G P, Murty M N. Clustering with evolution strategies [J]. Pattern Recognition,1994,2(27):321-329.
  • 5Sheng W, Tucker A, Liu X. Clustering with Niching genetic K-means algorithm [A]. Proceedings of Genetic and Evolutionary Computation Conference [C]. Berlin: Springer-Verlag, 2004. 162-173.
  • 6Krishna K,Murty M N. Genetic K-means algorithm [J]. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 1999,29(3):433-439.
  • 7Maulik U, Bandyopadhyay S. Genetic algorithm-based clustering technique [J]. Pattern Recognition, 1997,30(7):1 109-1 119.
  • 8de Castro L N, von Zuben F J. Learning and optimization using the clonal selection principle[J]. IEEE Transaction on Evolutionary Computation, 2002, 6(3): 239-251.
  • 9Sugeno M, Yasukawa T. A fuzzy logic based approach to qualitative modeling [J]. IEEE Trans Fuzzy Systems, 1993,1(2): 7-31.
  • 10Blake C L, Merz C J. UCI repository of machine learning databases [EB/OL]. http://www.ics.uci. edu/~mlearn/MLRepository.html, 2004-08-10.

共引文献16

同被引文献206

引证文献26

二级引证文献253

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部