期刊文献+

基于改进的自适应小波神经网络的心电信号分类 被引量:12

New Adaptive Wavelet Neural Network for ECG Recognition
下载PDF
导出
摘要 心电信号(ECG)识别是重病特别护理中一个非常重要的课题,自动检测和分类心电节律信号是诊断心脏异常的一项重要任务。基于小波变换理论,小波神经网络已经被广泛的应用于信号的表达和分类。文中介绍了一种具有一层感知机的小波神经网络,对小波神经网络收敛性影响较大的网络初始化值提出了一种改进的初始化算法,并研究得出了隐含层的选取与网络收敛性的关系。应用该网络分类心电信号的正常心跳和室前收缩,取得了很好的效果。文中使用到的心电数据是从MIT-BIH心电失常数据库中下载的。 Recognition of electrocardiogram (ECG) is an important area in biomedical signal processing. Based on the wavelet transform theory, the wavelet neural network has been wildly used for signal representation and classification. A new adaptive wavelet neural network with one perceptron was introduced for ECG signal recognition. The initialization and training approaches were proposed and the relation between the number of the hidden layers and the astringency of the network was found. The network used for distinguishing the normal beat and the premature ventricular contraction and high performance was obtained. In present work, the ECG data was taken from MIT- BIH Arrhythmia database.
作者 刘春玲 王旭
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第14期3281-3282,3297,共3页 Journal of System Simulation
基金 国家自然科学基金资助项目(50477015)
关键词 心电信号 小波变换 小波神经网络 室前收缩 ECG wavelet transform wavelet neural network premature ventricular contraction
  • 相关文献

参考文献12

  • 1I Daubechies.Ten Lectures on Wavelets.CBMS-Conference Lecture Notes[M].SIAM Philadelphia:SIAM V.6,1992.
  • 2G Krishna Prasad,J S Sahambi.Classification of ECG Arrhythmias using Multi-Resolution Analysis and Neural Networks[C]// IEEE TENCON 2003.Bangalore,India,Allied Publishes Pvt Ltd,2003:482-488.
  • 3Clifton D,Addison P S,Stiles M K,et al.Using wavelet transform reassignment techniques for ECG characterisation[J].Computers in Cardiology(S0276-6574),2003,9(1):581-584.
  • 4H H Szu,B Telfer,S Kadambe.Neural network adaptive wavelets for signal representation and classification.[J].Optical Engineer(S91-3286),1992,31(9):1907-1916.
  • 5Angrisani L Daponte,P Dapos Apuzzo,M.Wavelet Network-Based Detection and Classification of Transients.[J].IEEE transactions on Instrumentation and Measurement(S0018-9456),2001,50(5).
  • 6H Dickhaus,H Heinrich.Classifying biosignals with wavelet networks-A method for noninvasive diagnosis[J].IEEE Engineering in Medicine and Biology Magazine(S0739-5175),1996,15(5):103-111.
  • 7F Tuteur.Wavelet transformation in signal detection[C]// 8th IFAC/IFORS Symposium,1998,2:1061-1065.
  • 8Q Zhang,A Benveniste.Wavelet networks[J].IEEE transactions on Neural Networks(S1045-9227),1992,3(6):889-898.
  • 9Rioul O R,Vetterli M.Wavelets and signal processing[J].IEEE Signal Processing Magazine(S1053-5888),1991,8(4):14-38.
  • 10黄宛.临床心电图学[M].(第5版).北京:人民卫生出版社,2001.

同被引文献81

引证文献12

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部