期刊文献+

SVM方法及其在客户流失预测中的应用研究 被引量:30

Support Vector Machine and Its Application in Customer Churn Prediction
原文传递
导出
摘要 客户流失分析与预测是客户关系管理的重要内容.针对客户流失问题,建立了支持向量机预测模型.针对实际客户流失数据中正负样本数量不平衡而且数据量大的特点,提出带有不同类权重参数的支持向量机算法CW-SVM,通过调整类权重参数改变分类面位置,提高算法分类准确性;将标准支持向量机训练问题转化为运算效率更高的核向量机问题,提出处理不平衡海量数据集的CWC-SVM算法.通过实际银行信贷客户数据集测试,该算法与传统预测算法比较,更适合解决大数据集和不平衡数据,取得较好的客户流失预测效果. Customer churn analysis and prediction play an important role in customer relationship management and improve benefit of enterprise, A Support Vector Machine model is established to predict customer churn, Customer churn characteristic is presented in this paper. According to the churn data which is large scale and imbalance, this paper presents a two-class model based on improved SVM to predict customer churn, The class weighted SVM model CW-SVM is presented, and the accuracy is improved by adjusting the class weight and the position of boundary, The efficiency is improved by translating the SVM to the Core Vector Machine and a new algorithms CWC-SVM is presented, The arithmetic performance is better than others based on the test of real credit debt data set in the commercial bank.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2007年第7期105-110,共6页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70671059)
关键词 客户流失 支持向量机 客户关系管理 预测 customer churn support vector machine customer relationship management prediction
  • 相关文献

参考文献12

  • 1Reichheld Frederick F,Sasser EarlW.Zero defections:Quality comes to services[J].Harvard Business Review,1990,105-111.
  • 2Jones Thomas O,Sasser W Earl.Why satisfied customers defect[J].Harvard Business Review,1999,73 (6).
  • 3Mozer M C,Wolniewicz R,Grimes D B,et al.Churn reduction in the wireless industry[J].Advances in Neural Information Processing Systems,2000(12),935-941.
  • 4Lemmens A,Croux C.Bagging and Boosting Classification Trees to predict churn[R],DTEW Research Report 0361,2003,40.
  • 5Catherine Yang.AOL:Scrambling to Halt the Exodus.Business Week,2003 (8),Issue 3844,62.
  • 6Wu G,Chang E.Class-Boundary Alignment for Imbalanced Dataset Learning[C]//ICML Workshop on Learning from Imbalanced Data Sets II,Washington DC.2003.
  • 7许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 8Pavlov D,Chudova D,Smyth P.Towards scalable support vector machines using squashing[C]//Proc 6th ACM SIGKDD International Conf on Knowledge Discovery and Data Mining,Boston,Massachusetts,USA,2000.295-299.
  • 9IvorW.Tsang,James T.Kwok,and Pak-Ming Cheung.Core vector machines:Fast SVM training on very large data sets[J].Journal of Machine Learning Research,2005(6):363-392.
  • 10Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995

二级参考文献25

  • 1[1]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. The 5th Annual ACM Workshop on COLT [C]. Pittsburgh:ACM Press, 1992. 144-152.
  • 2[2]Cortes C, Vapnik V N. Support vector networks[J].Machine Learning, 1995, 20(3): 273-297.
  • 3[3]Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines [A]. Advances in Neural Information Processing Systems[C]. Cambridge: MIT Press, 1997. 155-161.
  • 4[4]Vapnik V N, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing [A]. Advances in Neural Information Processing Systems [ C ].Cambridge: MIT Press, 1997. 281-287.
  • 5[5]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 6[6]Vapnik V N. Statistical Learning Theory [M]. New York: Wiley, 1998.
  • 7[7]Vapnik V N. The Nature of Statistical Learning Theory [M]. 2nd edition. New York: SpringerVerlag, 1999.
  • 8[8]Platt J. Fast training of support vector machines using sequential minimal optimization [ A ]. Advances in Kernel Methods - Support Vector Learning [C].Cambridge: MIT Press, 1999. 185-208.
  • 9[9]Suykens J A K, Vandewalle J. Least squares support vector machines [J]. Neural Processing Letters, 1999, 9(3): 293-300.
  • 10[10]Scholkopf B, Smola A J, Williamson R C, et al. New support vector algorithms [J]. Neural Computation,2000, 12(5) :1207-1245.

共引文献131

同被引文献412

引证文献30

二级引证文献187

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部