期刊文献+

PID控制器的粒子群多目标优化设计 被引量:7

Multi-object Optimization Design of PID Controllers Based on Particle Swarm Algorithms
下载PDF
导出
摘要 提出一种基于粒子群优化算法的PID控制器设计方法,该方法定义一个包含系统超调量、上升时间和稳态误差指标项的适应度函数,根据控制系统的实际要求对各指标项进行适当加权.采用带收缩因子的粒子群算法对PID进行多目标寻优,实现了PID控制器的自动参数整定.应用该方法得到的PID控制器综合性能优于常规方法得到的PID控制器. A parameter tuning method for PID controllers based on particle swarm optimization with a constriction factor is proposed. A fitness function containing terms of overshoot, rise time and steady-state error of the system is defined. These terms are properly weighted. The particle swarm optimization algorithm is used in the multi-object optimization of PID controllers so that automatic tuning of the PID parameters can be achieved. The overall performance of the PID controllers using the proposed method is better than that by using conventional methods.
出处 《应用科学学报》 CAS CSCD 北大核心 2007年第4期392-396,共5页 Journal of Applied Sciences
基金 江苏省教育厅自然科学基金项目(06KJB510040)
关键词 粒子群算法 PID控制器 多目标优化 参数整定 particle swarm algorithms PID controller multi-object optimization parameter tuning
  • 相关文献

参考文献10

  • 1ASTROM K J,HAGGLUND T.Automatic tuning of simple regulators with specifications on phase and amplitude margins[J].Automatica,1984,20:645-651.
  • 2ASTROM K J,HAGGLUND T.PID controllers:theory,design and tuning[J].Instrument Society of America,1995.
  • 3KENNEDY J,EBERHART R.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks,Perth,Australia,1995:1942-1948.
  • 4COELL C A,PULIDO G T,LECHUGA M S.Handling multiple objectives with particle swarm optimization[J].IEEE Trans on Evolutionary Computation,2004,8 (3):256-279.
  • 5夏蔚军,吴智铭.基于混合微粒群优化的多目标柔性Job-shop调度[J].控制与决策,2005,20(2):137-141. 被引量:35
  • 6胡家声,郭创新,曹一家.一种适合于电力系统机组组合问题的混合粒子群优化算法[J].中国电机工程学报,2004,24(4):24-28. 被引量:132
  • 7苏成利,徐志成,王树青.PSO算法在非线性系统模型参数估计中的应用[J].信息与控制,2005,34(1):123-125. 被引量:19
  • 8SHI Yuhui,EBERHART R C.Modified particle swarm optimizer[C]//Proceedings of IEEE International Conference on Evolutionary Computation,Anchorage,1998:69-73.
  • 9CLERC M,KENNEDY J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J].IEEE Trans on Evolutionary Computation,2002,6(1):58-73.
  • 10XU Jianxin,LIU Changchieh,LIU Chen.Parallel structure and tuning of a fuzzy PID controller[J] Automatica,2000,36:673-684.

二级参考文献17

  • 1韩学山,柳焯.考虑发电机组输出功率速度限制的最优机组组合[J].电网技术,1994,18(6):11-16. 被引量:88
  • 2韦柳涛,曾庆川,姜铁兵,虞锦江,黄定疆.启发式遗传基因算法及其在电力系统机组组合优化中的应用[J].中国电机工程学报,1994,14(2):67-72. 被引量:27
  • 3蔡煜东,陈常庆.用遗传算法辨识发酵动力学模型参数[J].化工学报,1995,46(3):338-342. 被引量:14
  • 4Kacem I, Hammadi S, Borne P. Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems[J]. IEEE Trans on Systems, Man, and Cybernetics,Part C,2002,32(1) : 1-13.
  • 5Kacem I, Hammadi S, Borne P. Pareto-optimality approach for flexible job-shop scheduling problems.hybridization of evolutionary algorithms and fuzzylogic[J]. Mathematics and Computers in Simulation,2002,60 (3-5) : 245-276.
  • 6Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc of the IEEE Int Conf on Neural Network[C]. Perth, 1995:1942-1948.
  • 7Shi Y, Eberhart R. Empirical study of particle swarm optimization [A]. Proc of Congress on Evolutionary Computation[C]. Washington, 1999.1945-1950.
  • 8Brandimarte P. Routing and scheduling in a flexible job shop by taboo search [ J]. Annals of Operations Research, 1993,41 (22) : 157-183.
  • 9Tung L F, Li L, Nagi R. Multi-objective scheduling for the hierarchical control of flexible manufacturing systems [J]. The Int J of Flexible Manufacturing Systems, 1999,11 (4) : 379-409.
  • 10Kennedy J, Eberhart R C. Particle swarm optimization [A]. Proceedings of the IEEE International Conference on Neural Networks [C]. Piscataway, NJ, USA: IEEE, 1995. 1942~1948.

共引文献180

同被引文献59

引证文献7

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部