期刊文献+

基于智能解析余度的容错飞控系统设计 被引量:3

Intelligence Analytical Redundancy-Based Fault-Tolerance Design for Flight Control System
下载PDF
导出
摘要 常规的解析余度容错方法容易受到不确定因素和随机干扰的影响,本文以飞行控制系统为研究对象,提出基于智能解析余度的容错飞行控制系统设计方案,使用径向基神经网络的在线学习和全局逼近的性能,建立飞行控制系统传感器之间的解析余度关系,利用不相同传感器之间的解析关系进行残差分析从而进行传感器的故障隔离与信号重构.这样有效地抑制了测量噪声和模型不确定性.应用某型飞机进行仿真,实现了传感器的在线故障隔离与重构,验证了该方法的有效性. To restrain modeling uncertainties and disturbance, a method for sensor failure diagnosis and accommodation is proposed, which is based on intelligence analytical redundancy. The analytical models of sensors are set up by using the Radio Basis Function neural network which is designed applying efficient al- gorithm of on-line learning and parameter optimization. According to the relationship between the sensors, residual is produced and analyzed for sensors fault isolation and signal reconfiguration. By the method, model uncertainties, noises and disturbance are restrained. The scheme is illustrated through simulations applying the flight control system of a fighter. Results show sensor online fault isolation and reconfigura tion is achieved.
出处 《传感技术学报》 CAS CSCD 北大核心 2007年第8期1912-1916,共5页 Chinese Journal of Sensors and Actuators
关键词 解析余度 径向基神经网络(RBFNN) 飞行控制系统 容错 analytical redundancy Radio Basis Function neural network flight control systems fault-tolerance
  • 相关文献

参考文献6

  • 1Capriglione D,Liguori C,and Pietrosanto A.Analytical Redundancy for Sensor Fault Isolation and Accommodation in Public Transportation Vehicles[J].Instrumentation and Measurement.IEEE Transactions on,2004,53(4):1457-1462.
  • 2Polycarpou M,Xiaodong Zhang,Xu R,Yanli Yang,Chiman Kwan.A Neural Network Based Approach to Adaptive Fault Tolerant Flight Control[C]//Intelligent Control,Proceedings of the IEEE International Symposium on,2004:61-66.
  • 3Napolitano Marcello R and Giovanni Silvestri.Sensor Validation Using Hardware-Based on-Line Learning Neural Networks[J].IEEE transactions on aerospace and electronic systems,1998,34(2):56-66.
  • 4Mattern Duane L and Jaw Link C.Using Neural Networks for Sensor Validation[C]//AIAA Joint propulsion conference & exhibit,Cleveland OH,1998:1-12.
  • 5Marinaro M,Scarpetta S.On-line Learning in RBF Neural Networks:a Stochastic Approach[J].Neural Networks,Elsevier Science,2000,13(7):720-729.
  • 6Wang Lipo,Liu Bing,and Wan Chunru,A Novel RBF Neural Network with Fast Training and Accurate Generalization[C]//Computational and Information Science First International Symposium,Springer-Verlag Berlin Heidelberg 2004,Vol3314,pp:166-171.

同被引文献47

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部