期刊文献+

基于灰度图像的阴影检测算法 被引量:4

Shadow Detection Algorithm in Gray Degree Image
下载PDF
导出
摘要 基于灰度图像的阴影检测算法,通过快速归一化互相关函数计算方法其复杂度,并采用背景减法与帧差法相结合方法提取运动前景。其步骤包括提取运动前景及检测运动目标的阴影。该方法与基于HSV模型的阴影检测算法相比,实验表明:在不需要任何的颜色信息的情况下,基于灰度图像的阴影检测算法能较好检测出阴影。 Shadow detection algorithm based on grayscale video sequences, decreases complexity through the computational method of fast normalized cross correlation (FNCC), and uses the method of combination of background subtraction and two consecutive frames subtraction to extract the moving prospect. Its steps include extracting the moving prospect and detecting the moving target shadow. Comparing this method with the shadow detection algorithm based on HSV model, experimental results showed that proposed algorithm could detect the shadow accurately and only used gray information of video sequences
出处 《兵工自动化》 2007年第7期45-47,共3页 Ordnance Industry Automation
基金 四川省教育厅重点资助项目(2006A097)
关键词 灰度图像 阴影检测 归一化互相关函数 HSV模型 Gray image Shadow detection Normalized cross correlation (NCC) HSV model detection
  • 相关文献

参考文献6

  • 1Julio Cezar Silveira Jacques Jr,Claudio Rosito Jung,Soraia Raupp Musse.Background Subtraction and Shadow Detection in Grayscale Video Sequences[A].IEEE Computer Society[C],2005.189-196.
  • 2A J H.Hii,C E Hann,J G.Chase,E E W Van Houten.Fast Normalized Cross Correlation for Motion Tracking Using Basis Functions[J].Computer Methods and Programs in Biomedicine,2006,82 (2):144-156.
  • 3Du-Ming Tsai,Chien-Ta Lin.Fast Normalized Cross Correlation for Defect Detection[J].Pattern Recognition Letters,2003,24,(15):2625-2631.
  • 4Alessandro Bevilacqua.Optimizing Parameters of a Motion Detection System by Means of a Distributed Genetic Algorithm[A].Image and Vision Computing,2005,23 (9):815-829.
  • 5肖梅,韩崇昭,张雷.交通监控系统中基于多源信息融合的运动阴影检测[J].西安交通大学学报,2005,39(10):1077-1080. 被引量:9
  • 6张丽,李志能.基于阴影检测的HSV空间自适应背景模型的车辆追踪检测[J].中国图象图形学报(A辑),2003,8(7):778-782. 被引量:16

二级参考文献13

  • 1[1]Kameda Yoshinari. Minoh michihiko a human motion estimation method using 3-successive video frames[A]. In: Proceedings of International Conference on Virtual Systems and Multimedia[C],Gifu, Japan, 1996:135~140.
  • 2[2]Cucchiara R, Grana C, Piccardi M et al. Statistic and knowledge-based moving object detection in traffic scenes[A].In: Proceedings of the 3rd IEEE Conference on Intelligent Transportation Systems [C], Dearborn, Indiana, USA: IEEE Computer Society Press, 2000: 27 ~ 32.
  • 3[3]Francois A R J, Medioni G G. Adaptive color background modeling for real-time segmentation of video streams[A]. In:Proceedings of International Conference on Imaging Science,Systems, and Technology[C], Las Vegas,NA, USA, 1999: 227~232.
  • 4[4]Grimson W E L, Stauffer C, Romano R et al. Using adaptive tracking to classify and monitor activities in a site [A]. In: IEEE Conference on Computer Vision and Pattern Recognition[C],Santa Barbara,CA, USA, 1998:22~29.
  • 5[5]Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking[A]. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition [C],Fort Collins ,Colorado, USA, 1999 : 2246~2252.
  • 6[6]Stauffer C, Grimson W E L. Learning patterns of activity using real-time tracking[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2000,22 (8): 747~757.
  • 7[7]Cucchiara R, Grana C, Piccardi M et al. Improving shadow suppression in moving object detection with HSV color information [A]. In: Proceedings of IEEE Intelligent Transportation Systems Conference [C], Oakland, CA, USA,2001: 334~339.
  • 8Onoguchi K. Shadow elimination method for moving object detection [A]. Fourteenth International Conference on Pattern Recognition, Brisbane, Australia, 1998.
  • 9Bevilacqua A. Effective shadow detection in traffic monitoring applications [A]. The 11th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Plzen Bory, Czech Republic, 2003.
  • 10Fung G S K, Yung N H C, Pang G K H, et al. Towards detection of moving cast shadows for visual traffic surveillance [A]. IEEE International Conference on Systems, Man and Cybernetics, Tucson, USA, 2001.

共引文献23

同被引文献36

  • 1华希俊,廖茜,陈美云,王木菊.阴影环境下拖拉机视觉导航路径识别方法研究[J].农机化研究,2012,34(4):181-184. 被引量:4
  • 2左文明.连通区域提取算法研究[J].计算机应用与软件,2006,23(1):97-98. 被引量:31
  • 3黄新波,孙钦东,王小敬,武键,刘家兵.输电线路危险点远程图像监控系统[J].高电压技术,2007,33(8):192-197. 被引量:58
  • 4LERTRATFANAPANICH S, BOSE N K. High Resolution Image Formation From Low Resolution Frames Using Delaunay Triangulation [ J ]. IEEE Transactions on Image Processing,2002,11 ( 12 ) : 1427-1441.
  • 5DEBEVEC P E, MALIK J. Recovering high dynamic range radiance maps from photographs [ C]//ACM SIG- GRAPH 2008 classes. NewYork, USA : ACM, 2008 : 31.
  • 6AKERS D, LOSASSO F, KLINGNER J, et al. Conve- ying shape and features with image-based relighting [ C]//Proceedings of the 14th IEEE Visuahzation 2003 (VIS03). [ s. 1. ] : IEEE Computer Society, 2003 : 46.
  • 7RASKAR R, ILIE A, YU J. Image fusion for context en- hancement and video surrealism [ C ]//ACM SIGGRAPH 2005 Courses. NewYork, USA : ACM, 2005 : 4.
  • 8TOET A. Multiscale contrast enhancement with applica- tions to image fusion[ J]. Optical Engineering, 1992, 31 (5) : 1026-1031.
  • 9GERONIMO J S, HARDIN D P, MASSOPUST P R. Fractal functions and wavelet expansions based on several scaling functions [ J ]. Journal of Approximation Theory, 1994, 78(3) : 373-401.
  • 10FATrAL R, AGRAWALA M, RUSINKIEWICZ S. Multi- scale shape and detail enhancement from multi-light image collections[J]. ACM Trans Graph, 2007, 26(3) : 51.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部