期刊文献+

某炮口制退器的多目标优化设计 被引量:3

Multi-objective Optimization of a Muzzle Brake
下载PDF
导出
摘要 炮口制退器的性能是用制退器效率、炮口冲击波超压值、炮口火焰强度等因素的大小来评价的。为得到综合性能优良的炮口制退器结构,采用非支配排序遗传算法(NSGA-II)和流场数值模拟对某扩张喷口炮口制退器进行了多目标优化设计。流场数值计算模型采用二维轴对称欧拉方程进行描述,优化目标取为制退器所受冲击力最大和给定点的超压值最小,优化变量为喷口结构参数。通过优化得到了Pareto最优解集,为制退器的设计提供了非常有意义的参考。 The performance of a muzzle brake is usually evaluated by muzzle brake efficiency, the overpressure around the muzzle, and muzzle flash. The multi-objective optimization was performed on a muzzle brake based on the NSGA-H (Non-dominated Sorting Genetic Algorithm II) and numerical simulation to obtain high performance. The flow field was modeled with Euler equations and the objectives for the optimization were maximization of the pulse force on the muzzle brake and minimization of overpressure at the specified spot. The Pareto-optimal front was obtained which will be helpful for the design of the muzzle brake.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第15期3478-3480,3484,共4页 Journal of System Simulation
关键词 数值模拟 多目标优化 遗传算法 炮口制退器 numerical simulation Multi-objective optimization genetic algorithm muzzle brake
  • 相关文献

参考文献5

  • 1高树滋.火炮反后坐装置设计[M].北京:兵器工业出版社,1995.114-199.
  • 2Jiang Kun,Qian Linfang,Yuan Renshu.Application of unstructured grids on the research of perforated shock tube jet flow[C]// International Conference on Mechanical Engineering and Mechanics,Nanjing:Science Press,2005.
  • 3Srinivas N,Deb K.Multiobjective optimization using nondominated sorting in genetic algorithms[R].Techincal report,Kanput,India:Department of Mechanical Engineering,Indian Institute of Techoonology,1993.
  • 4Deb K,Pratap Amirt,Agarwal Sameer,Meyarivan T.,A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation (S1089-778X),2002,6(2):182-197.
  • 5吴中元,关志华,李光泉.一种改进的非支配排序遗传算法[J].北京科技大学学报,2002,24(6):679-682. 被引量:4

二级参考文献13

  • 1[1]Srinivas N, Deb K. Multiobjective function optimization using nondominated sorting genetic algorithms [J].Evolutionary Computation, 1995, 2(3): 221
  • 2[2]Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization [A]. In: Forrest S. Proceedings of the Fifth International Conference on Genetic Algorithms [C]. San Mateo: Morgan Kauffman, 1993. 416
  • 3[3]Horn J, Nafploitis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization [A]. In: Michalewicz Z editor, Proceedings of the First IEEE Conference on Evolutionary Computation [C].Piscataway: IEEE Service Center, 1994.82
  • 4[4]Zitzler E, Thiele L. Multiobjective optimization using evolutionary algorithms-A comparative case study [A]. Parallel Problem Solving from Nature V [C]. Berlin, 1998.292~301.
  • 5[5]Deb K. Multiobjective genetic algorithms: Problem difficulties and construction of test Functions [J]. Evolutionary Computation, 1999,7(3): 205
  • 6[6]Rudolph G. Evolutionary search under partially ordered sets [R]. Technical Report No. CI-67/99, Dortmund: Department of Computer Science/LS11, University of Dortmund, 1999
  • 7[7]Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical results[J]. Evolutionary Computation. 1999, 8(2): 173
  • 8[8]Knowles J, Corne D. The Pareto archived evolution strategy: A new baseline algorithm for multiobjective optimization [A]. In: Proceedings of the 1999 Congress on Evolutionary Computation [C]. Piscatway: IEEE Service Center, 1999. 98
  • 9[9]Zitzler E. Evolutionary algorithms for multiobjective optimization: Methods and applications [D]. Zurich: Swiss Federal Institute of Technology (ETH). Aachen: Shaker Verlag, 1999
  • 10[10]Coello C A C, Christansen A D. A simple genetic algorithm for the design of reinforced concrete beams [J]. Engineering with Computers, 1997, 13(4): 185

共引文献86

同被引文献21

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部