期刊文献+

基于LS-SVM的网络化控制系统自适应预测控制 被引量:8

Approach of Adaptive Prediction Control on Networked Control Systems Based on Least-squares Support Vector Machines
下载PDF
导出
摘要 针对网络化控制系统(NCS)中的随机时变时延,提出了一种用最小二乘支持向量机(LS-SVM)预估网络时延的方法。先将网络时延建模为非线性时间序列,再用径向基函数(RBF)作为LS-SVM的核函数,建立了网络控制系统的时延预测模型,然后用该模型预估的时延作为控制器的参数,对网络化控制系统的时延进行补偿和预测控制。仿真结果表明提出的时延预测方法,对网络控制系统的随机时变时延有较高的预测精度,根据该时延设计的控制器能使系统的输出很好地跟踪期望的输出。 A time-delay estimate algorithm for networked control systems based on least-square support vecotr machines was proposed, Modeling the time delay of networked control systems as a nonlinear time series, the future time delay could be predicted by least-square support vector machines with the radial basis function kernel. An adaptive predictive control algorithm was proposed to compensate and predicte for the time delay of networked control systems. Simulation results show that the proposed method has good performance in time delay predictation of networked control systems, and the plant output can trace desired output effectively.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第15期3494-3498,3502,共6页 Journal of System Simulation
基金 国家自然科学基金(60674057) 教育部博士点基金资助项目(20040613013) 四川省应用基础研究基金(05JY029-006-04)
关键词 网络化控制系统 最小二乘 支持向量机 时延估计 自适应控制 networked control systems least squares support vector machines time delay estimation adaptive control
  • 相关文献

参考文献12

二级参考文献41

  • 1刘斌,苏宏业,褚健.一种基于最小二乘支持向量机的预测控制算法[J].控制与决策,2004,19(12):1399-1402. 被引量:38
  • 2张贤达 保铮.通讯信号处理[M].北京:国防工业出版社,2000.420-482.
  • 3Vapnik V.Statistical Learning Theory [M].Wiley-Interscience Publication,1998.
  • 4Burges C J C.A Tutorial on Support Vector Machines for Patten Recognition [J].Data Mining and Knowledge Discovery,1998,2:1-47.
  • 5S Chen.A K Samingan,L Hanzo.Support Vector Machine Multiuser Receiver for DS-CDMA Signal in Multipath Channels [J].IEEE Transaction on Neural Networks,2001,12(3):604-611.
  • 6Xiaohong Gong,Kuh A.Support Vector Machine for Multiuser Detection in CDMA Communications [C]//Signals,Systems,and Computers,1999.Conference Record of the Thirty-Third Asilomar Conference on,1999,680-684.
  • 7K W Lau,Q H Wu.OnlineTraining of Support Vector Classifier [J].Patten Recognition,2003,36:1913-1920.
  • 8U Madhow,M Honing.MMSE Interference Suppression for Direct-Sequence Spread-Spectrum CDMA [J].IEEE Trans on Communications,1998,46(8):1065-1075.
  • 9Osuna E,Freund R,Girosi G.Improved Training Algorithm for Support Vector Machines [C]//Principle J,Gile L,Morgan N,Wilson E.Neural Network for Signal Processing Ⅶ.Proceedings of the 1997 IEEE Workshop.USA:IEEE,1997.276-285.
  • 10Platt J.Fast Training of Support Vector Machines Using Sequential Minimal Optimization [C]//Sch(o)lkopf B,Burges C,Smola A J.Advanced in Kernel Methods Support Vector Learning.Cambridge,MA:MIT Press,1999.185-208.

共引文献61

同被引文献86

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部