期刊文献+

光束分数傅里叶变换几何特性的相空间束矩阵分析方法 被引量:5

Phase space beam matrix method for evaluating geometrical aspect of fractional Fourier transform of light beams
原文传递
导出
摘要 提出一种分析傍轴光束分数傅里叶变换几何特性的相空间束矩阵变换的简单方法.以分析椭圆高斯光束分数傅里叶变换几何特性为例,研究表明,利用本方法讨论傍轴束分数傅里叶变换的几何特性简单可靠、从几何图像理解傍轴束分数傅里叶变换清晰直观.为研究光束传输变换的特性提供了一种简单方便的新途径. In this paper, a simple technique to determine the geometrical properties of fractional Fourier transform of paraxial beams based on the phase space beam transformation matrix is presented. Taking the elliptic Gaussian beam as an example, we have compared our analysis technique with that of previous work and found that the present method is more reliable in predicting the geometrical properties of fractional Fourier transform of beams and has the advantage of clear intuitive physical insight into beam propagation and transformation process from a geometrical viewpoint. This technique provides a simple and convenient way to study propagation and transformation properties of light beams in a novel approach.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2007年第8期4535-4541,共7页 Acta Physica Sinica
基金 浙江省教育厅科研基金(批准号:20061470) 浙江省自然科学基金(批准号:Y605359)资助的课题.~~
关键词 相空间束矩阵 分数傅里叶变换 椭圆高斯光束 phase space beam matrix, fractional Fourier transform, elliptic Gaussian beam
  • 相关文献

参考文献16

  • 1Namias V 1973 J.Inst.Math.Appl.25 241.
  • 2Hua J,Liu L,Li G 1997 Appl.Opt.36 8490.
  • 3Pei S C,Yeh M H,Luo T L 1999 IEEE Trans.Signal Proces.47 2883.
  • 4Shinde S,Gadre V M 2001 IEEE Trans.Signal Proces.49 2545.
  • 5Zhang Y,Dong B,Gu B,Yang G 1998 J.Opt.Soc.Am.A 15 1114.
  • 6Xue X,Wei H Q,Kirk A G 2001 Opt.Lett.26 1746.
  • 7Cai Y J,Lin Q 2003 Opt.Commun.217 7.
  • 8Hiroyuki Y,Toshiaki I 1997 J.Opt.Soc.Am.A 14 3388.
  • 9Cai Y J,Lin Q 2003 J.Opt.Soc.Am.A 20 1528.
  • 10Cai Y J,Lin Q 2004 Chin.Phys.13 1025.

二级参考文献16

  • 1Namias V 1973 J Inst Math Appl. 25 241.
  • 2Mendlovic D and Ozaktas H M 1993 J Opt Soc Am. A 10 1875.
  • 3Ozaktas H M and Mendlovic D 1993 Optics Comm. 101 163.
  • 4Ozaktas H M and Mendlovic D 1993 J Opt Soc Am. A 10 2552.
  • 5Lohmann A W 1993 J Opt Soc Am. A 10 2181.
  • 6Ozaktas H M et al 1994 J Opt Soc Am. A 11547.
  • 7Mendlovic D, Ozaktas H M and Lohmann A W 1995 Appl Opt. 34 303.
  • 8Ozaktas H M and Mendlovic D 1994 Opt Lett. 19 2622.
  • 9Bastiaans M J 1980 J Opt Soc Am. A 69 1710.
  • 10Cai Y J and Lin Q 2003 Optics Comm. 217 7.

共引文献8

同被引文献80

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部